Skip to main content
Log in

Instrumented stabilization in spinal tuberculosis

  • Review
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Spinal tuberculosis (TB) produces neurological complications and grotesque spinal deformity, which in children increases even with treatment and after achieving healing. Long-standing, severe deformity leads to painful costo-pelvic impingement, respiratory distress, risk of developing late-onset paraplegia and consequent reduction in quality and longevity of life. The treatment objective is to avoid the sequelae of neural complications and achieve the healed status with a near-normal spine. In TB, the spine may become unstable if all three columns are diseased. Pathological fracture/dislocation of a diseased vertebral body may occur secondary to mechanical insult. Surgical decompression adds further instability, as part of the diseased vertebral body is excised. The insertion of a metallic implant is to provide mechanical stability and the use of an implant in tubercular infection is safe. Indications for instrumented stabilisation can be categorised as: (a) pan vertebral disease, in which all three columns are diseased; (b) long-segment disease, in which after surgical decompression a bone graft >5 cm is inserted with instrumentation to prevent graft-related complications and consequent progression of kyphosis and neural complications and (c) when surgical correction of a kyphosis is performed when both anterior decompression and posterior column shortening is required. The implant choice should be individualised according to the case. Pedicle screw fixation in kyphus correction in healed disease is a most suitable implant. Hartshill sublaminar wiring stabilisation in active disease is a suitable implant to stabilise the spine, taking purchase against healthy posterior complex of the vertebral body to save a segment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rajasekaran S (2002) The problem of deformity in spinal tuberculosis. Clin Orthop Relat Res 398:85–92

    Article  PubMed  Google Scholar 

  2. Jain AK (2010) Tuberculosis of spine (2010) A fresh look at an old disease. J Bone Joint Surg Br 92:905–913

    Article  PubMed  CAS  Google Scholar 

  3. Tuli SM (1995) Severe kyphotic deformity in tuberculosis of the spine. Int Orthop 19:327–331

    Article  PubMed  CAS  Google Scholar 

  4. Rajasekaran S, Shanmugasundaram TK (1987) Prediction of the angle of gibbus deformity in tuberculosis of the spine. J Bone Joint Surg Am 69:503–509

    PubMed  CAS  Google Scholar 

  5. Guven O (1996) Severe kypootic deformity in tuberculosis spine. Int Orthop 20:271

    PubMed  CAS  Google Scholar 

  6. Jain AK, Dhammi IK, Prashad B, Sinha S, Mishra P (2008) Simultaneous anterior decompression and posterior instrumentation of the tuberculosis spine using an anterolateral extrapleural approach. J Bone Joint Surg Br 90:1477–1481

    Article  PubMed  CAS  Google Scholar 

  7. Altman GT, Altman DT, Frankovitch KF (1996) Anterior and posterior fusion for children with tuberculosis of spine. Clin Orthop 325:225–231

    Article  PubMed  Google Scholar 

  8. Mehta JS, Bhojraj SY (2001) Tuberculosis of thoracic spine a classification based on the selection of surgical strategies. J Bone Joint Surg Br 83B:859–863

    Article  Google Scholar 

  9. Jain AK, Dhammi IK (2007) Tuberculosis of the spine: a review. Clin Orthop Relat Res 460:39–49

    Article  PubMed  Google Scholar 

  10. Jain AK, Maheshwari AV, Jena S (2007) Kyphus correction in spinal tuberculosis. Clin Orthop Relat Res 460:117–123

    Article  PubMed  Google Scholar 

  11. Oga M, Arizono T, Takasita M, Sugioka Y (1993) Evaluation of the risk of instrumentation as a foreign body in spinal tuberculosis: Clinical and biologic study. Spine 18:1890–1894

    Article  PubMed  CAS  Google Scholar 

  12. Jain AK, Dhammi IK, Jain S, Mishra P (2010) Kyphosis in spinal tuberculosis – prevention and correction. Indian J Orthop 44(2):127–136

    Article  PubMed  Google Scholar 

  13. Harda BE (1975) The classic wiring of the vertebrae as a means of immobilization in fractures and Pott’s disease. Clin Orthop 112:4–8

    Google Scholar 

  14. Harrington RR (1988) The history and development of harrington instrumentation. Clin Orthop 227:3

    PubMed  CAS  Google Scholar 

  15. Luque E (1982) The anatomical basis and development of segmental spinal instrumentation. Spine 7:256–259

    Article  PubMed  CAS  Google Scholar 

  16. Panjabi M, Abumi K, Durancean J, Crisco J (1988) Biomechanicl evaluation of spinal fixation devices - stability provided by eight internal fixation devices. Spine 13:1135–1140

    Article  PubMed  CAS  Google Scholar 

  17. Moon MS, Woo YK, Lee KS, Ha KY, Kim SS, Sun DH (1995) Posterior instrumentation and anterior interbody fusion for tuberculous kyphosis of dorsal and lumbar spines. Spine 20:1910–1916

    Article  PubMed  CAS  Google Scholar 

  18. Louw JA (1990) Spinal tuberculosis with neurological deficit: Treatment with anterior vascularised rib grafts, posterior osteotomies and fusion. J Bone Joint Surg Br 72:686–693

    PubMed  CAS  Google Scholar 

  19. Sundararaj GD, Behera S, Ravi V, Venkatesh K, Cherian VM, Lee V (2003) Role of posterior stabilisation in the management of tuberculosis of the dorsal and lumbar spine. J Bone Joint Surg Br 85:100–106

    Article  PubMed  CAS  Google Scholar 

  20. Wang B, Ozawa H, Tanaka Y, Matsumoto F, Aizawa T, Kokubun S (2006) One-stage lateral rhachotomy and posterior spinal fusion with compression hooks for Pott’s paralysis in the elderly. J Orthop Surg 14(3):310–314

    CAS  Google Scholar 

  21. Benli IT, Kis M, Akalın S, Citak M, Kanevetci S, Duman E (2000) The results of anterior radical debridement and anterior instrumentation in Pott's disease and comparison with other surgical techniques. Kobe J Med Sci 46:39–68

    PubMed  CAS  Google Scholar 

  22. Wen-Jer C, Chi-Chuan W, Chi-Hsiung J, Lih-Huei C, Chi-Chien N, Po-Liang L (2002) Combined anterior and posterior aurgeries in the treatment of spinal tuberculous spondylitis. Clin Orthop Relat Res 398:50–59

    Article  Google Scholar 

  23. Hirakawa A, Miyamoto K, Masuda T, Fukuta S, Hosoe H, Iinuma N, Iwai C, Nishimoto H, Shimizu K (2010) Surgical outcome of 2-stage (posterior and anterior) surgical treatment using spinal instrumentation for tuberculous spondylitis. J Spinal Disord Tech 23(2):133–138

    Article  PubMed  Google Scholar 

  24. Talu U, Gogus A, Ozturk C, Hamzaoglu A, Domanic U (2006) The role of posterior instrumentation and fusion after anterior radical debridement and fusion in the surgical treatment of spinal tuberculosis: experience of 127 cases. J Spinal Disord Tech 19(8):554–559

    Article  PubMed  Google Scholar 

  25. Erturer E, Tezer M, Aydogan M, Mirzanlı C, Ozturk I (2010) The results of simultaneous posterior-anterior-posterior surgery in multilevel tuberculosis spondylitis associated with severe kyphosis. Eur Spine J 19(12):2209–2215

    Article  PubMed  Google Scholar 

  26. Mukhtara AM, Farghalyb MM, Shaban H (2003) Ahmeda surgical treatment of thoracic and lumbar tuberculosis by snterior Interbody fusion and posterior instrumentation. Med Princ Pract 12:92–96

    Article  Google Scholar 

  27. Karaeminogullari O, Aydinli U, Ozerdemoglu R, Ozturk C (2007) Tuberculosis of the lumbar spine: outcomes after combined treatment of two-drug therapy and surgery. Spine 30(1):55

    CAS  Google Scholar 

  28. Hong-Qi Z, Yu-Xiang W, Chao-feng G, Zhao D, Deng A, Jian-Huang Wu, Liu J-Y (2010) One-stage posterior focus debridement, fusion, and instrumentation in the surgical treatment of cervicothoracic spinal tuberculosis with kyphosis in children: a preliminary report. Childs Nerv Syst 27(5):735–742

    Google Scholar 

  29. Li J, Lü GH, Wang XB, Wang B, Lu C, Deng YW (2010) One-stage combined anterior and posterior strategy in treating active tuberculosis of thoracic and lumbar spine complicated with severe kyphotic deformity. Zhonghua Wai Ke Za Zhi 48(8):597–600, Article in Chinese

    PubMed  CAS  Google Scholar 

  30. Gu XF, Cheng L, Zhou YY (2009) Radical debridement and single stage posterior spinal fusion and instrumentation for the treatment of thoracic-lumber tuberculosis. Zhonghua Yi Xue Za Zhi 89(41):2898–2901 [article in Chinese]

    PubMed  Google Scholar 

  31. Zaveri GR, Mehta SS (2009) Surgical treatment of lumbar tuberculous spondylodiscitis by transforaminal lumbar interbody fusion (TLIF) and posterior instrumentation. J Spinal Disord Tech 22(4):257–262

    Article  PubMed  Google Scholar 

  32. Feng D, Kang J, Hou Z (2008) Combined anterior and posterior surgeries for lumbarsacral junction tuberculosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 22(4):408–410

    PubMed  Google Scholar 

  33. Yu FY, Ma YZ, Chen X, Li HW (2010) Surgical treatment of previously treated thoracic and thoracolumbar spinal tuberculosis. Zhonghua Yi Xue Za Zhi 90(27):1877–1881 [article in Chinese]

    PubMed  Google Scholar 

  34. Zheng QX, Pan HT, Guo XD, Wu YC, Wu HB (2008) Anterior radical debridement and bone grafting with one-stage instrumentation anteriorly or posteriorly for the treatment of thoracic and lumbar spinal Tuberculosis. Zhonghua Jie He He Hu Xi Za Zhi 31(2):99–102

    PubMed  Google Scholar 

  35. Güzey FK, Emel E, Bas NS, Hacisalihoglu S, Seyithanoglu MH, Karacor SE, Ozkan N, Alatas I, Sel B (2005) Thoracic and lumbar tuberculous spondylitis treated by posterior debridement, graft placement, and instrumentation: a retrospective analysis in 19 cases. J Neurosurg Spine 3(6):450–458

    Article  PubMed  Google Scholar 

  36. Laheri VJ, Badhe NP (2001) Dewnany GT (2001) Single stage decompression, anterior interbody fusion and posterior instrumentation for tuberculous kyphosis of the dorso-lumbar spine. Spinal Cord 39:429–436

    Article  PubMed  CAS  Google Scholar 

  37. Lee SH, Sung JK, Park YM (2006) Single-stage transpedicular decompression and posterior instrumentation in treatment of thoracic and thoracolumbar spinal tuberculosis: A retrospective case series. J Spinal Disord Tech 19:595–602

    Article  PubMed  Google Scholar 

  38. Gokce A, Ozturkmen Y, Mutlu S, Caniklioglu M (2008) Spinal osteotomy: Correcting sagittal balance in tuberculous spondylitis. J Spinal Disord Tech 21:484–488

    Article  PubMed  Google Scholar 

  39. Bezer M, Kucukdurmaz F, Guven O (2007) Transpedicular decancellation osteotomy in the treatment of posttuberculous kyphosis. J Spinal Disord Tech 20:209–215

    Article  PubMed  Google Scholar 

  40. Kalra KP, Dhar SB, Shetty G, Dhariwal Q (2006) Pedicle subtraction osteotomy for rigid post-tuberculous kyphosis. J Bone Joint Surg Br 88:925–927

    PubMed  CAS  Google Scholar 

  41. Guven O, Kumano K, Yalcin S, Karahan M, Tsuji S (1994) A single stage posterior approach and rigid fixation for preventing kyphosis in the treatment of spinal tuberculosis. Spine 19:1039–1043

    Article  PubMed  CAS  Google Scholar 

  42. Hang QS, Zheng C, Hu Y, Xianoling Y, Huazi Xu, Zhang G, Wang Q (2009) One-stage surgical management for children with spinal tuberculosis by anterior decompression and posterior instrumentation. Int Orthop (SICOT) 33(5):1385–1390

    Article  Google Scholar 

  43. Rajasekaran S, Vijay K, Shetty AP (2010) Single-stage closing-opening wedge osteotomy of spine to correct severe post-tubercular kyphotic deformities of the spine: a 3-year follow-up of 17 patients. Eur Spine J 19(4):583–592, Epub 2009 Dec 15

    Article  PubMed  CAS  Google Scholar 

  44. Bezer M, Kucukdurmaz F, Aydin N, Kocaoglu B, Guven O (2005) Tuberculous spondylitis of the lumbosacral region: long-term follow-up of patients treated by chemotherapy, transpedicular drainage, posterior instrumentation, and fusion. J Spinal Disord Tech 18(5):425–429

    Article  PubMed  Google Scholar 

  45. Gong K, Wang Z, Luo Z (2010) Single-stage posterior debridement and transforaminal lumbar interbody fusion with autogenous bone grafting and posterior instrumentation in the surgical management of lumbar tuberculosis. Arch Orthop Trauma Surg. Jun 17. [Epub ahead of print]

  46. Güven O, Bezer M, Aydin N, Ketenci IE (2008) Treatment strategy in tuberculous spondylitis: long-term follow-up results of 55 patients. Acta Orthop Traumatol Turc 42(5):334–343

    PubMed  Google Scholar 

  47. Yilmaz C, Selek HY, Gürkan I, Erdemli B, Korkusuz Z (1999) Anterior instrumentation for the treatment of spinal tuberculosis. J Bone Joint Surg [Am] 81-B:1261–1267

    Google Scholar 

  48. Ozdemir HM, Us AK (2003) Ogün T (2003) The role of anterior spinal instrumentation and allograft fibula for the treatment of pott disease. Spine 28:474–479

    PubMed  Google Scholar 

  49. Christodoulou AG, Givissis P, Karataglis D, Symeonidis PD, Pournaras J (2006) Treatment of tuberulosis spondylitis with anterior stabilization and titanium cage. Clin Orthop 444:60–65

    PubMed  Google Scholar 

  50. Dai LY, Jiang LS, Wang W, Cui YM (2005) Single-stage anterior autogenous bone grafting and instrumentation in the surgical management of thoracolumbar spinal tuberculosis. Spine 30:2342–2349

    Article  PubMed  Google Scholar 

  51. Benli IT, Alanay A, Akalin A, Acaraoglu KE (2004) Comparision of anterior instrumentation systems and the results of minimum 5 years follow up in the treatment of tuberculosis spondylitis. Kobe J Med Sci 50(5–6):167–180

    PubMed  Google Scholar 

  52. Benli IT, Aydın E, Kis M, Akalın S, Tuzuner M, Baz AB (1996) The results of anterior instrumentation in vertebral tuberculosis. J Turkish Spine Surg 7(3):98–101

    Google Scholar 

  53. Benli IT, Acaroglu E, Akalin S, Kis M, Duman E, Un A (2003) Anterior radical debridement and anterior instrumentation in tubercolous spondylitis. Eur Spine J 12:224–234

    PubMed  Google Scholar 

  54. Benli IT, Akalin S, Kis M, Citak M, Kurtulus B, Duman E (2000) The results of anterior fusion and Cotrel – Dubousset – Hopf instrumentation in idiopathic scoliosis. Eur Spine J 9(6):505–515

    Article  PubMed  CAS  Google Scholar 

  55. Halit C, Ramazan AK, Osman NT, Cengiz T, Brahim C, Yunus A (2008) A long-term follow-up study of anterior tibial allografting and instrumentation in the management of thoracolumbar tuberculous spondylitis. J Neurosurg Spine 8:30–38

    Article  Google Scholar 

  56. Jain AK (2002) Treatment of tuberculosis of the spine with neurologic complications. Clin Orthop 398:75–84

    Article  PubMed  Google Scholar 

  57. Chen CL, Chou CW, Su WW, Cheng CY, Yu CT (2008) Dislodged upper thoracic cage in the gastrointestinal tract: a case report and literature reviews. Spine 33(21):E802–E806

    Article  PubMed  Google Scholar 

  58. Korovessis P, Petsinis G, Koureas G, Iliopoulos P, Zacharatos S (2006) Anterior surgery with insertion of titanium mesh cage and posterior instrumented fusion performed sequentially on the same day under one anesthesia for septic spondylitis of thoracolumbar spine: is the use of titanium mesh cages safe? Spine 31(9):1014–1019

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A.K., Jain, S. Instrumented stabilization in spinal tuberculosis. International Orthopaedics (SICOT) 36, 285–292 (2012). https://doi.org/10.1007/s00264-011-1296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1296-5

Keywords

Navigation