Skip to main content

Advertisement

Log in

Enhancement of the osseointegration of a polyethylene terephthalate artificial ligament graft in a bone tunnel using 58S bioglass

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to investigate whether a bioactive glass (BG) coating on the polyethylene terephthalate (PET) artificial ligament could enhance graft osseointegration by promoting bone regeneration at the interface between PET graft and bone tunnel.

Methods

Thirty New Zealand white rabbits underwent artificial ligament graft transplantation in proximal tibial tunnels bilaterally. One limb was implanted with a 58S BG-coated PET graft, and the contralateral limb was implanted with a non-BG-coated PET graft as a control. The rabbits were randomly sacrificed at three, six and 12 weeks after surgery for biomechanical and histological examinations.

Results

The maximum load to failures of the BG-coated experimental group were significantly higher than those of the control group at 12 weeks (p = 0.0051). Histologically, at 12 weeks, the BG-coated PET graft induced great new bone formation between graft and host bone, and the average graft-bone interface width of the BG group became significantly lower than that of the control group. Furthermore, the BG coating on the ligament graft surface also stimulated greater expression of bone morphogenetic protein 2 (BMP-2) and vascular endothelial growth factor (VEGF) around the graft in vivo compared to the control group at three weeks (p < 0.05).

Conclusions

This study has shown that a BG coating on the PET artificial ligament surface has a positive effect in the induction of artificial ligament osseointegration within the bone tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W (2010) Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. Int Orthop 34:465–471

    Article  PubMed  Google Scholar 

  2. Li B, Wen Y, Wu H, Qian Q, Wu Y, Lin X (2009) Arthroscopic single-bundle posterior cruciate ligament reconstruction: retrospective review of hamstring tendon graft versus LARS artificial ligament. Int Orthop 33:991–996

    Article  PubMed  CAS  Google Scholar 

  3. Nau T, Lavoie P, Duval N (2002) A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament. Two-year follow-up of a randomised trial. J Bone Joint Surg Br 84:356–360

    Article  PubMed  CAS  Google Scholar 

  4. Gao K, Chen S, Wang L, Zhang W, Kang Y, Dong Q et al (2010) Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow-up. Arthroscopy 26:515–523

    Article  PubMed  Google Scholar 

  5. Guidoin MF, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R (2000) Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials 21:2461–2474

    Article  PubMed  CAS  Google Scholar 

  6. De Giglio E, Cometa S, Ricci MA, Zizzi A, Cafagna D, Manzotti S et al (2010) Development and characterization of rhVEGF-loaded poly(HEMA-MOEP) coatings electrosynthesized on titanium to enhance bone mineralization and angiogenesis. Acta Biomater 6:282–290

    Article  PubMed  Google Scholar 

  7. Au AY, Au RY, Al-Talib TK, Eves B, Frondoza CG (2008) Consil bioactive glass particles enhance osteoblast proliferation and maintain extracellular matrix production in vitro. J Biomed Mater Res A 86:678–684

    PubMed  Google Scholar 

  8. Välimäki VV, Yrjans JJ, Vuorio E, Aro HT (2005) Combined effect of BMP-2 gene transfer and bioactive glass microspheres on enhancement of new bone formation. J Biomed Mater Res A 75:501–509

    PubMed  Google Scholar 

  9. Vogel M, Voigt C, Gross UM, Müller-Mai CM (2001) In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22:357–362

    Article  PubMed  CAS  Google Scholar 

  10. Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP et al (2011) Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Biomaterials 32:1051–1058

    Article  PubMed  CAS  Google Scholar 

  11. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL et al (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25:5857–5866

    Article  PubMed  CAS  Google Scholar 

  12. Day RM (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–777

    Article  PubMed  CAS  Google Scholar 

  13. Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207

    Article  PubMed  CAS  Google Scholar 

  14. Leach JK, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ (2006) Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27:3249–3255

    Article  PubMed  CAS  Google Scholar 

  15. Sasaki K, Kuroda R, Ishida K, Kubo S, Matsumoto T, Mifune Y et al (2008) Enhancement of tendon-bone osteointegration of anterior cruciate ligament graft using granulocyte colony-stimulating factor. Am J Sports Med 36:1519–1527

    Article  PubMed  Google Scholar 

  16. Ma CB, Kawamura S, Deng XH, Ying L, Schneidkraut J, Hays P et al (2007) Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med 35:597–604

    Article  PubMed  Google Scholar 

  17. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27:476–488

    PubMed  CAS  Google Scholar 

  18. Mihelic R, Pecina M, Jelic M, Zoricic S, Kusec V, Simic P et al (2004) Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med 32:1619–1625

    Article  PubMed  Google Scholar 

  19. Anderson K, Seneviratne A, Izawa K, Atkinson B, Potter H, Rodeo S (2001) Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 29:689–698

    PubMed  CAS  Google Scholar 

  20. Raines AL, Olivares-Navarrete R, Wieland M, Cochran DL, Schwartz Z, Boyan BD (2010) Regulation of angiogenesis during osseointegration by titanium surface microstructure and energy. Biomaterials 31:4909–4917

    Article  PubMed  CAS  Google Scholar 

  21. Välimäki VV, Aro HT (2006) Molecular basis for action of bioactive glasses as bone graft substitute. Scand J Surg 95:95–102

    PubMed  Google Scholar 

  22. Leu A, Leach JK (2008) Proangiogenic potential of a collagen/bioactive glass substrate. Pharm Res 25:1222–1229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was subsidised by the 863 Project (No. 2007AA021902,2007AA021903) and 973 Project (No. 2009CB930000) from the Ministry of Science and Technology of China.

Financial support

This project was subsidised by the 863 Project (No. 2007AA021902,2007AA021903) and 973 Project (No. 2009CB930000) from the Ministry of Science and Technology of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Chen, S., Wu, Y. et al. Enhancement of the osseointegration of a polyethylene terephthalate artificial ligament graft in a bone tunnel using 58S bioglass. International Orthopaedics (SICOT) 36, 191–197 (2012). https://doi.org/10.1007/s00264-011-1275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-011-1275-x

Keywords

Navigation