Skip to main content
Log in

In vivo three-dimensional kinematics of total elbow arthroplasty using fluoroscopic imaging

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Higher complication rates and lower survivorship are still seen for total elbow arthroplasties compared to total knee and hip arthroplasties. This is partly due to polyethylene wear of the articular surface induced by excessive articular contact stress during elbow motion. The aim of this study was to dynamically evaluate in vivo three-dimensional elbow motion after total elbow arthroplasty. Twelve patients (15 elbows) who underwent operation with the Osaka University Model Total Elbow System were analysed using X-ray fluoroscopic imaging and a two-dimensional/three-dimensional registration technique, which could accurately estimate the three-dimensional spatial position of components. Valgus/varus angle and rotation between humeral and ulnar components showed wide variations among patients. Elbows with valgus angle and internal rotation >10° could induce edge-loading of the articular surface. Component alignment, articular configuration, and soft-tissue balance can affect the kinematics of total elbow arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kelly EW, Coghlan J, Bell S (2004) Five-to thirteen-year follow-up of the GSB III total elbow arthroplasty. J Shoulder Elbow Surg 13(4):434–440

    Article  PubMed  Google Scholar 

  2. Gill DRJ, Morrey BF (1998) The Coonrad-Morrey total elbow arthroplasty in patients who have rheumatoid arthritis. A ten to fifteen-year study. J Bone Joint Surg Am 80(9):1327–1335

    PubMed  CAS  Google Scholar 

  3. Morrey BF, Adams RA (1992) Semiconstrained arthroplasty for the treatment of rheumatoid arthritis of the elbow. J Bone Joint Surg Am 74(4):479–490

    PubMed  CAS  Google Scholar 

  4. Tanaka N, Kudo H, Iwano K et al (2001) Kudo total elbow arthroplasty in patients with rheumatoid arthritis: A long-term follow-up study. J Bone Joint Surg Am 83(10):1506–1513

    PubMed  Google Scholar 

  5. Mori T, Kudo H, Iwano K et al (2006) Kudo type-5 total elbow arthroplasty in mutilating rheumatoid arthritis. J Bone Joint Surg Br 88(7):920–924

    Article  PubMed  CAS  Google Scholar 

  6. Rozing P (2000) Souter-Strathclyde total elbow arthroplasty. A long-term follow-up study. J Bone Joint Surg Br 82(8):1129–1134

    Article  PubMed  CAS  Google Scholar 

  7. Ovesen J, Olsen BS, Johannsen HV et al (2005) Capitellocondylar total elbow replacement in late-stage rheumatoid arthritis. J Shoulder Elbow Surg 14(4):414–420

    Article  PubMed  Google Scholar 

  8. Ewald FC, Simmons ED, Sullivan JA et al (1993) Capitellocondylar total elbow replacement in rheumatoid arthritis: long-term results. J Bone Joint Surg Am 75(4):498–507

    PubMed  CAS  Google Scholar 

  9. Vessely MB, Whaley AL, Harmsen WS et al (2006) Long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin Orthop Relat Res 452:28–34

    Article  PubMed  Google Scholar 

  10. Sathappan SS, Teicher ML, Capeci CC et al (2007) Clinical outcome of total hip arthroplasty using the normalized and proportionalized femoral stem with a minimum 20-year follow-up. J Arthroplasty 22(3):356–362

    Article  PubMed  Google Scholar 

  11. Goldberg SH, Robert M et al (2008) Modes of wear after semiconstrained total elbow arthroplasty. J Bone Joint Surg Am 90(3):609–619

    Article  PubMed  Google Scholar 

  12. Watanabe T, Yamazaki T, Sugamoto K et al (2004) In vivo kinematics of mobile-bearing knee arthroplasty in deep knee bending motion. J Orthop Res 22(5):1044–1049

    Article  PubMed  Google Scholar 

  13. Tamaki M, Tomita T, Yamazaki T, Hozack WJ, Yoshikawa H, Sugamoto K (2008) In vivo kinematic analysis of a high-flex posterior stabilized fixed-bearing knee prosthesis in deep knee-bending motion. J Arthroplasty 23(6):879–885

    Article  PubMed  Google Scholar 

  14. Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24(6):972–978

    Article  PubMed  Google Scholar 

  15. O’Driscoll SW, An KN, Korinek S et al (1992) Kinematics of semi-constrained total elbow arthroplasty. J Bone Joint Surg Br 74(2):297–299

    PubMed  Google Scholar 

  16. Zuffi S, Leardini A, Catani F et al (1999) A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imaging 18(10):981–991

    Article  PubMed  CAS  Google Scholar 

  17. Yamazaki T, Watanabe T, Nakajima Y, Sugamoto K, Tomita T, Maeda D, Sahara W, Yoshikawa H, Tamura S (2005) Visualization of femorotibial contact in total knee arthroplasty using X-ray fluoroscopy. Eur J Radiol 53:84–89

    Article  PubMed  Google Scholar 

  18. Kamineni S, O’Driscoll SW, Urban M et al (2005) Intrinsic constraint of unlinked total elbow replacements—the ulnotrochlear joint. J Bone Joint Surg Am 87(9):2019–2027

    Article  PubMed  CAS  Google Scholar 

  19. An KN (2005) Kinematics and constraint of total elbow arthroplasty. J Shoulder Elbow Surg 14(1 Suppl S):168S–173S

    Article  PubMed  Google Scholar 

  20. Ramsey M, Neale PG, Morrey BF et al (2003) Kinematics and functional characteristics of the Prithchard ERS unlinked total elbow arthroplasty. J Shoulder Elbow Surg 12(4):385–390

    Article  PubMed  Google Scholar 

  21. Inagaki K, O’Driscoll SW, Neale PG et al (2002) Importance of a radial head component in Sorbie unlinked total elbow arthroplasty. Clin Orthop Relat Res 400:123–131

    Article  PubMed  Google Scholar 

  22. Schneeberger AG, King GJW, Song SW et al (2000) Kinematics and laxity of the Souter-Strathclyde total elbow prosthesis. J Shoulder Elbow Surg 9(2):127–134

    Article  PubMed  CAS  Google Scholar 

  23. Herren DB, O’Driscoll SW, An KN (2001) Role of collateral ligaments in the GSB III-linked total elbow prosthesis. J Shoulder Elbow Surg 10(3):260–264

    Article  PubMed  CAS  Google Scholar 

  24. Schuind F, O’Driscoll S, Korinek S et al (1995) Loose-hinge total elbow arthroplasty: an experimental study of the effects of implant alignment on three-dimensional elbow kinematics. J Arthroplasty 10(5):670–678

    Article  PubMed  CAS  Google Scholar 

  25. Ericson A, Stark A, Arndt A (2008) Variation in the position of the elbow flexion axis after total joint replacement with three different prostheses. J Shoulder Elbow Surg 17(5):760–767

    Article  PubMed  Google Scholar 

  26. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  PubMed  Google Scholar 

  27. Delport HP, Banks SA, De Schepper J et al (2006) A kinematic comparison of fixed-and mobile-bearing knee replacements. J Bone Joint Surg Br 88(8):1016–1021

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuma Futai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futai, K., Tomita, T., Yamazaki, T. et al. In vivo three-dimensional kinematics of total elbow arthroplasty using fluoroscopic imaging. International Orthopaedics (SICOT) 34, 847–854 (2010). https://doi.org/10.1007/s00264-010-0972-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-010-0972-1

Keywords

Navigation