Skip to main content
Log in

Greater accuracy in positioning of the acetabular cup by using an image-free navigation system

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

In a prospective and randomised clinical study, acetabular cups were implanted free-hand (control group n=22) or with computer assistance using an image-free navigation system (study group n=23). The cup position was determined postoperatively on pelvic CT. An average inclination of 42.3° (range: 30°–53°; SD±7.0°) and an average anteversion of 24.0° (range: −3° to 51°; SD±15.0°) were found in the control group, and an average inclination of 45.0° (ranage: 40°–50°; SD±2.8°) and an average anteversion of 14.4° (range: 5°–25°; SS±5.0°) in the computer-assisted study group. The deviations from the desired cup position (45° inclination, 15° anteversion) were significantly lower in the computer-assisted study group (p<0.001 each). While only 11/22 of the cups in the control group were within the Lewinnek safe zone, 21/23 of the cups in the study group were placed in this target region (p=0.003).

Résumé

Dans un étude clinique prospective et randomisé, les cupules acétabulaires ont été implantées de façon habituelle (n=22; groupe témoin) ou avec assistance d’un ordinateur qui utilise un système de navigation image—libre (n=23; groupe d’étude). La place de la cupule a été déterminée après l’opération sur un scanner pelvien. Une inclinaison moyenne de 42,3° (30° à 53°; ±7.0°) et une antéversion moyenne de 24,0° (−3° à 51°; ±15.0°) ont été trouvées dans le groupe témoin et une inclinaison moyenne de 45,0° (40° à 50°; ±2.8°) et une antéversion moyenne de 14,4° (5° à 25°; ±5.0°) dans le groupe de l’étude assistée par ordinateur. Les déviations par rapport à la position désirée de la cupule (45° d’inclinaison, 15° d’antéversion) étaient notablement inférieures dans le groupe de l’étude assistée par ordinateur (p<0.001 chacun). Alors que seulement 11 des 22 cupules du groupe témoin étaient dans la zone sûre de Lewinnek, 21 des 23 cupules du groupe d’étude ont été placées dans cette région cible (p=0.003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D’Lima DD, Urquhart AG, Buehler KO, Walker RH, Colwell CW Jr (2000) The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am 82:315–321

    PubMed  Google Scholar 

  2. Del Schutte H Jr, Lipman AJ, Bannar SM, Livermore JT, Ilstrup D, Morrey BF (1998) Effects of acetabular abduction on cup wear rates in total hip arthroplasty. J Arthroplast 13:621–626

    Google Scholar 

  3. DeWal H, Su E, DiCesare PE (2003) Instability following total hip arthroplasty. Am J Orthop 32:377–382

    PubMed  Google Scholar 

  4. DiGioia AM, Jaramaz B, Blackwell M, Simon DA, Morgan F, Moody JE, Nikou C, Colgan BD, Aston CA, Labarca RS, Kischell E, Kanade T (1998) The Otto Aufranc Award. Image-guided navigation system to measure intraoperatively acetabular implant alignment. Clin Orthop 355:8–22

    PubMed  Google Scholar 

  5. Hassan DM, Johnston GH, Dust WN, Watson G, Dolovich AT (1998) Accuracy of intraoperative assessment of acetabular prosthesis placement. J Arthroplast 13:80–84

    Article  Google Scholar 

  6. Jaramaz B, DiGioia AM III, Blackwell M, Nikou C (1998) Computer assisted measurement of cup placement in total hip replacement. Clin Orthop 354:70–81

    Article  PubMed  Google Scholar 

  7. Jolles BM, Genoud P, Hoffmeyer P (2004) Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop 426:174–179

    PubMed  Google Scholar 

  8. Jolles BM, Zangger P, Leyvraz PF (2002) Factors predisposing to dislocation after primary arthroplasty: a multivariate analysis. J Arthroplast 17:282–288

    Article  Google Scholar 

  9. Kalteis T, Beckmann J, Herold T, Zysk S, Bäthis H, Perlick L, Grifka J (2004) Accuracy of an image-free cup navigation system—an anatomical study. Biomed Tech 49:257–262

    Google Scholar 

  10. Kennedy JG, Rogers WB, Soffe KE, Sullivan RJ, Griffen DG, Sheehan LJ (1998) Effect of acetabular component orientation on recurrent dislocation, pelvic osteolysis, polyethylene wear, and component migration. J Arthroplast 13:530–534

    Article  Google Scholar 

  11. Kummer FJ, Shah S, Iyer S, DiCesare PE (1999) The effect of acetabular cup orientations on limiting hip rotation. J Arthroplast 14:509–513

    Article  Google Scholar 

  12. Leenders T, Vandevelde D, Mahieu G, Nuyts R (2002) Reduction in variability of acetabular cup abduction using computer-assisted surgery: a prospective and randomized study. Comput Aided Surg 7:99–106

    Article  PubMed  Google Scholar 

  13. Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR (1978) Dislocations after total hip replacement arthroplasties. J Bone Joint Surg Am 60:217–220

    PubMed  Google Scholar 

  14. McCollum DE, Gray WJ (1990) Dislocation after total hip arthroplasty: causes and prevention. Clin Orthop 261:159–170

    PubMed  Google Scholar 

  15. Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75:228–232

    PubMed  Google Scholar 

  16. Nogler M, Kessler O, Prassl A, Donnelly B, Streicher R, Sledge JB, Krismer M (2004) Reduced variability of acetabular cup positioning with use of an imageless navigation system. Clin Orthop 426:159–163

    PubMed  Google Scholar 

  17. Paterno SA, Lachiewicz PF, Kelley SS (1997) The influence of patient-related factors and the position of the acetabular component on the rate of dislocation after total hip replacement. J Bone Joint Surg Am 79:1202–1210

    PubMed  Google Scholar 

  18. Saxler G, Marx A, Vandevelde D, Langlotz U, Tannast M, Wiese M, Michaelis U, Kemper G, Grützner PA, Steffen R, von Knoch M, Holland-Letz T, Bernsmann K (2004) The accuracy of free-hand cup positioning—a CT based measurement of cup placement in 105 total hip arthroplasties. Int Orthop 28:198–201

    Article  PubMed  Google Scholar 

  19. Wentzensen A, Zheng G, Vock B, Langlotz U, Korber J, Nolte L-P, Grützner PA (2003) Image-based hip navigation. Int Orthop 27 (Suppl 1):S43–S46

    PubMed  Google Scholar 

  20. Zheng G, Marx A, Langlotz U, Widmer KH, Buttaro M, Nolte LP (2002) A hybrid CT-free navigation system for total hip arthroplasty. Comput Aided Surg 7:129–145

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kalteis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalteis, T., Handel, M., Herold, T. et al. Greater accuracy in positioning of the acetabular cup by using an image-free navigation system. International Orthopaedics (SICOT) 29, 272–276 (2005). https://doi.org/10.1007/s00264-005-0671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-005-0671-5

Keywords

Navigation