Skip to main content

Advertisement

Log in

Anti-4-1BB immunotherapy enhances systemic immune effects of radiotherapy to induce B and T cell-dependent anti-tumor immune activation and improve tumor control at unirradiated sites

  • Research
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Radiation therapy (RT) can prime and boost systemic anti-tumor effects via STING activation, resulting in enhanced tumor antigen presentation and antigen recognition by T cells. It is increasingly recognized that optimal anti-tumor immune responses benefit from coordinated cellular (T cell) and humoral (B cell) responses. However, the nature and functional relevance of the RT-induced immune response are controversial, beyond STING signaling, and agonistic interventions are lacking. Here, we show that B and CD4+ T cell accumulation at tumor beds in response to RT precedes the arrival of CD8+ T cells, and both cell types are absolutely required for abrogated tumor growth in non-irradiated tumors. Further, RT induces increased expression of 4-1BB (CD137) in both T and B cells; both in preclinical models and in a cohort of patients with small cell lung cancer treated with thoracic RT. Accordingly, the combination of RT and anti-41BB therapy leads to increased immune cell infiltration in the tumor microenvironment and significant abscopal effects. Thus, 4-1BB therapy enhances radiation-induced tumor-specific immune responses via coordinated B and T cell responses, thereby preventing malignant progression at unirradiated tumor sites. These findings provide a rationale for combining RT and 4-1bb therapy in future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Munhoz RR, Postow MA (2018) Clinical development of PD-1 in advanced melanoma. Cancer J 24(1):7–14. https://doi.org/10.1097/PPO.0000000000000299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larkin J, Lao CD, Urba WJ, McDermott DF, Horak C, Jiang J, Wolchok JD (2015) Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol 1(4):433–440. https://doi.org/10.1001/jamaoncol.2015.1184

    Article  PubMed  Google Scholar 

  3. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rizvi NA, Mazieres J, Planchard D, Stinchcombe TE, Dy GK, Antonia SJ, Horn L, Lena H, Minenza E, Mennecier B, Otterson GA, Campos LT, Gandara DR, Levy BP, Nair SG, Zalcman G, Wolf J, Souquet PJ, Baldini E, Cappuzzo F, Chouaid C, Dowlati A, Sanborn R, Lopez-Chavez A, Grohe C, Huber RM, Harbison CT, Baudelet C, Lestini BJ, Ramalingam SS (2015) Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol 16(3):257–265. https://doi.org/10.1016/S1470-2045(15)70054-9 (PubMed PMID: 25704439)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa1507643 (PubMed PMID: 26412456)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tiragolumab Impresses in Multiple Trials (2020) Cancer Discov 10(8):1086–1097. doi: https://doi.org/10.1158/2159-8290.CD-NB2020-063

  8. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutierrez E, Rutkowski P, Gogas HJ, Lao CD, De Menezes JJ, Dalle S, Arance A, Grob JJ, Srivastava S, Abaskharoun M, Hamilton M, Keidel S, Simonsen KL, Sobiesk AM, Li B, Hodi FS, Long GV, Investigators R (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386(1):24–34. https://doi.org/10.1056/NEJMoa2109970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eskiocak U, Guzman W, Wolf B, Cummings C, Milling L, Wu HJ, Ophir M, Lambden C, Bakhru P, Gilmore DC, Ottinger S, Liu L, McConaughy WK, He SQ, Wang C, Leung CL, Lajoie J, Carson WFt, Zizlsperger N, Schmidt MM, Anderson AC, Bobrowicz P, Schuetz TJ, Tighe R, (2020) Differentiated agonistic antibody targeting CD137 eradicates large tumors without hepatotoxicity. JCI Insight. https://doi.org/10.1172/jci.insight.133647

    Article  PubMed  PubMed Central  Google Scholar 

  10. Amatore F, Gorvel L, Olive D (2020) Role of Inducible Co-Stimulator (ICOS) in cancer immunotherapy. Expert Opin Biol Ther 20(2):141–150. https://doi.org/10.1080/14712598.2020.1693540

    Article  CAS  PubMed  Google Scholar 

  11. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A (2016) Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 52:50–66. https://doi.org/10.1016/j.ejca.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  12. Cohen EEW, Pishvaian MJ, Shepard DR, Wang D, Weiss J, Johnson ML, Chung CH, Chen Y, Huang B, Davis CB, Toffalorio F, Thall A, Powell SF (2019) A phase Ib study of utomilumab (PF-05082566) in combination with mogamulizumab in patients with advanced solid tumors. J Immunother Cancer 7(1):342. https://doi.org/10.1186/s40425-019-0815-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, Schmidt H, Robert C, Chiarion-Sileni V, Ascierto PA, Maio M, Urba WJ, Gangadhar TC, Suryawanshi S, Neely J, Jure-Kunkel M, Krishnan S, Kohrt H, Sznol M, Levy R (2017) Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 23(8):1929–1936. https://doi.org/10.1158/1078-0432.CCR-16-1272

    Article  CAS  PubMed  Google Scholar 

  14. Qi X, Li F, Wu Y, Cheng C, Han P, Wang J, Yang X (2019) Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcgammaR affinity. Nat Commun 10(1):2141. https://doi.org/10.1038/s41467-019-10088-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40(1):25–37. https://doi.org/10.1016/j.currproblcancer.2015.10.001

    Article  PubMed  Google Scholar 

  16. Stone HB, Peters LJ, Milas L (1979) Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst 63(5):1229–1235 (PubMed PMID: 291749)

    CAS  PubMed  Google Scholar 

  17. Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, Guha C (1999) Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res 59(24):6028–6032 (PubMed PMID: 10626784)

    CAS  PubMed  Google Scholar 

  18. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC (2018) Using immunotherapy to boost the abscopal effect. Nat Rev Cancer 18(5):313–322. https://doi.org/10.1038/nrc.2018.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388. https://doi.org/10.1158/1078-0432.CCR-09-0265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McBride S, Sherman E, Tsai CJ, Baxi S, Aghalar J, Eng J, Zhi WI, McFarland D, Michel LS, Young R, Lefkowitz R, Spielsinger D, Zhang Z, Flynn J, Dunn L, Ho A, Riaz N, Pfister D, Lee N (2021) Randomized phase II trial of nivolumab with stereotactic body radiotherapy versus nivolumab alone in metastatic head and neck squamous cell carcinoma. J Clin Oncol 39(1):30–37. https://doi.org/10.1200/JCO.20.00290

    Article  CAS  PubMed  Google Scholar 

  21. Theelen W, Peulen HMU, Lalezari F, van der Noort V, de Vries JF, Aerts J, Dumoulin DW, Bahce I, Niemeijer AN, de Langen AJ, Monkhorst K, Baas P (2019) Effect of pembrolizumab after stereotactic body radiotherapy vs pembrolizumab alone on tumor response in patients with advanced non-small cell lung cancer: results of the PEMBRO-RT phase 2 randomized clinical trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2019.1478

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee NY, Ferris RL, Psyrri A, Haddad RI, Tahara M, Bourhis J, Harrington K, Chang PM, Lin JC, Razaq MA, Teixeira MM, Lovey J, Chamois J, Rueda A, Hu C, Dunn LA, Dvorkin MV, De Beukelaer S, Pavlov D, Thurm H, Cohen E (2021) Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol 22(4):450–462. https://doi.org/10.1016/S1470-2045(20)30737-3

    Article  CAS  PubMed  Google Scholar 

  23. Tree AC, Jones K, Hafeez S, Sharabiani MTA, Harrington KJ, Lalondrelle S, Ahmed M, Huddart RA (2018) Dose-limiting urinary toxicity with pembrolizumab combined with weekly hypofractionated radiation therapy in bladder cancer. Int J Radiat Oncol Biol Phys 101(5):1168–1171. https://doi.org/10.1016/j.ijrobp.2018.04.070

    Article  CAS  PubMed  Google Scholar 

  24. Jagodinsky JC, Harari PM, Morris ZS (2020) The promise of combining radiation therapy with immunotherapy. Int J Radiat Oncol Biol Phys 108(1):6–16. https://doi.org/10.1016/j.ijrobp.2020.04.023

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D (2021) Biomarkers of radiotherapy-induced immunogenic cell death. Cells. https://doi.org/10.3390/cells10040930

    Article  PubMed  PubMed Central  Google Scholar 

  26. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi PM, Herati RS, Mansfield KD, Patsch D, Amaravadi RK, Schuchter LM, Ishwaran H, Mick R, Pryma DA, Xu X, Feldman MD, Gangadhar TC, Hahn SM, Wherry EJ, Vonderheide RH, Minn AJ (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520(7547):373–377. https://doi.org/10.1038/nature14292

    Article  CAS  PubMed  Google Scholar 

  27. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5):843–852. https://doi.org/10.1016/j.immuni.2014.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, Zheng W, Mauceri H, Mack M, Xu M, Fu YX, Weichselbaum RR (2017) Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun 8(1):1736. https://doi.org/10.1038/s41467-017-01566-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pilones KA, Charpentier M, Garcia-Martinez E, Daviaud C, Kraynak J, Aryankalayil J, Formenti SC, Demaria S (2020) Radiotherapy cooperates with IL15 to induce antitumor immune responses. Cancer Immunol Res 8(8):1054–1063. https://doi.org/10.1158/2326-6066.CIR-19-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Niknam S, Barsoumian HB, Schoenhals JE, Jackson HL, Yanamandra N, Caetano MS, Li A, Younes AI, Cadena A, Cushman TR, Chang JY, Nguyen QN, Gomez DR, Diab A, Heymach JV, Hwu P, Cortez MA, Welsh JW (2018) Radiation followed by OX40 stimulation drives local and abscopal antitumor effects in an anti-PD1-resistant lung tumor model. Clin Cancer Res 24(22):5735–5743. https://doi.org/10.1158/1078-0432.CCR-17-3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Belcaid Z, Phallen JA, Zeng J, See AP, Mathios D, Gottschalk C, Nicholas S, Kellett M, Ruzevick J, Jackson C, Albesiano E, Durham NM, Ye X, Tran PT, Tyler B, Wong JW, Brem H, Pardoll DM, Drake CG, Lim M (2014) Focal radiation therapy combined with 4–1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS ONE 9(7):e101764. https://doi.org/10.1371/journal.pone.0101764

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez-Ruiz ME, Rodriguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, Ponz-Sarvise M, Azpilikueta A, Bolanos E, Sanmamed MF, Berraondo P, Calvo FA, Barcelos-Hoff MH, Perez-Gracia JL, Melero I (2019) TGF beta blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther 18(3):621–631. https://doi.org/10.1158/1535-7163.MCT-18-0558

    Article  CAS  PubMed  Google Scholar 

  33. Shiao JC, Bowers N, Nasti TH, Khosa F, Khan MK (2017) 4–1BB (CD137) and radiation therapy: a case report and literature review. Adv Radiat Oncol 2(3):398–402. https://doi.org/10.1016/j.adro.2017.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T, Weichselbaum RR, Fu YX (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595. https://doi.org/10.1182/blood-2009-02-206870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arina A, Beckett M, Fernandez C, Zheng W, Pitroda S, Chmura SJ, Luke JJ, Forde M, Hou Y, Burnette B, Mauceri H, Lowy I, Sims T, Khodarev N, Fu YX, Weichselbaum RR (2019) Tumor-reprogrammed resident T cells resist radiation to control tumors. Nat Commun 10(1):3959. https://doi.org/10.1038/s41467-019-11906-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eberhardt CS, Kissick HT, Patel MR, Cardenas MA, Prokhnevska N, Obeng RC, Nasti TH, Griffith CC, Im SJ, Wang X, Shin DM, Carrington M, Chen ZG, Sidney J, Sette A, Saba NF, Wieland A, Ahmed R (2021) Functional HPV-specific PD-1(+) stem-like CD8 T cells in head and neck cancer. Nature 597(7875):279–284. https://doi.org/10.1038/s41586-021-03862-z

    Article  CAS  PubMed  Google Scholar 

  37. Whitmire JK, Asano MS, Kaech SM, Sarkar S, Hannum LG, Shlomchik MJ, Ahmed R (2009) Requirement of B cells for generating CD4+ T cell memory. J Immunol 182(4):1868–1876. https://doi.org/10.4049/jimmunol.0802501

    Article  CAS  PubMed  Google Scholar 

  38. Murphy K, Travers P, Walport M, Janeway C (2012) Janeway’s immunobiology, 8th edn. Garland Science, New York, pp 868–874

    Google Scholar 

  39. Herrera FG, Ronet C, Ochoa de Olza M, Barras D, Crespo I, Andreatta M, Corria-Osorio J, Spill A, Benedetti F, Genolet R, Orcurto A, Imbimbo M, Ghisoni E, Navarro Rodrigo B, Berthold DR, Sarivalasis A, Zaman K, Duran R, Dromain C, Prior J, Schaefer N, Bourhis J, Dimopoulou G, Tsourti Z, Messemaker M, Smith T, Warren SE, Foukas P, Rusakiewicz S, Pittet MJ, Zimmermann S, Sempoux C, Dafni U, Harari A, Kandalaft LE, Carmona SJ, Dangaj Laniti D, Irving M, Coukos G (2022) Low-dose radiotherapy reverses tumor immune desertification and resistance to immunotherapy. Cancer Discov 12(1):108–133. https://doi.org/10.1158/2159-8290.CD-21-0003

    Article  CAS  PubMed  Google Scholar 

  40. Franiak-Pietryga I, Miyauchi S, Kim SS, Sanders PD, Sumner W, Zhang L, Mundt AJ, Califano JA, Sharabi AB (2022) Activated B cells and plasma cells are resistant to radiation therapy. Int J Radiat Oncol Biol Phys 112(2):514–528. https://doi.org/10.1016/j.ijrobp.2021.08.037

    Article  PubMed  Google Scholar 

  41. Kim SS, Shen S, Miyauchi S, Sanders PD, Franiak-Pietryga I, Mell L, Gutkind JS, Cohen EEW, Califano JA, Sharabi AB (2020) B cells improve overall survival in HPV-associated squamous cell carcinomas and are activated by radiation and PD-1 blockade. Clin Cancer Res 26(13):3345–3359. https://doi.org/10.1158/1078-0432.CCR-19-3211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwon BS, Weissman SM (1989) cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci USA 86(6):1963–1967. https://doi.org/10.1073/pnas.86.6.1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J (2020) T-cell agonists in cancer immunotherapy. J Immunother Cancer. https://doi.org/10.1136/jitc-2020-000966

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cannons JL, Lau P, Ghumman B, DeBenedette MA, Yagita H, Okumura K, Watts TH (2001) 4–1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol 167(3):1313–1324. https://doi.org/10.4049/jimmunol.167.3.1313

    Article  CAS  PubMed  Google Scholar 

  45. Menk AV, Scharping NE, Rivadeneira DB, Calderon MJ, Watson MJ, Dunstane D, Watkins SC, Delgoffe GM (2018) 4–1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J Exp Med 215(4):1091–1100. https://doi.org/10.1084/jem.20171068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Teijeira A, Labiano S, Garasa S, Etxeberria I, Santamaria E, Rouzaut A, Enamorado M, Azpilikueta A, Inoges S, Bolanos E, Aznar MA, Sanchez-Paulete AR, Sancho D, Melero I (2018) Mitochondrial morphological and functional reprogramming following CD137 (4–1BB) costimulation. Cancer Immunol Res 6(7):798–811. https://doi.org/10.1158/2326-6066.CIR-17-0767

    Article  CAS  PubMed  Google Scholar 

  47. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nat Med 3(6):682–685. https://doi.org/10.1038/nm0697-682

    Article  CAS  PubMed  Google Scholar 

  48. Buchan SL, Dou L, Remer M, Booth SG, Dunn SN, Lai C, Semmrich M, Teige I, Martensson L, Penfold CA, Chan HTC, Willoughby JE, Mockridge CI, Dahal LN, Cleary KLS, James S, Rogel A, Kannisto P, Jernetz M, Williams EL, Healy E, Verbeek JS, Johnson PWM, Frendeus B, Cragg MS, Glennie MJ, Gray JC, Al-Shamkhani A, Beers SA (2018) Antibodies to Costimulatory Receptor 4–1BB Enhance Anti-tumor Immunity via T Regulatory Cell Depletion and Promotion of CD8 T Cell Effector Function. Immunity 49(5):958–970. https://doi.org/10.1016/j.immuni.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  49. Finney HM, Akbar AN, Lawson AD (2004) Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. J Immunol 172(1):104–113. https://doi.org/10.4049/jimmunol.172.1.104

    Article  CAS  PubMed  Google Scholar 

  50. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, Gloss B, Danet-Desnoyers G, Campana D, Riley JL, Grupp SA, June CH (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17(8):1453–1464. https://doi.org/10.1038/mt.2009.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Innamarato P, Asby S, Morse J, Mackay A, Hall M, Kidd S, Nagle L, Sarnaik AA, Pilon-Thomas S (2020) Intratumoral activation of 41BB costimulatory signals enhances CD8 T cell expansion and modulates tumor-infiltrating myeloid cells. J Immunol 205(10):2893–2904. https://doi.org/10.4049/jimmunol.2000759

    Article  CAS  PubMed  Google Scholar 

  52. Futagawa T, Akiba H, Kodama T, Takeda K, Hosoda Y, Yagita H, Okumura K (2002) Expression and function of 4–1BB and 4–1BB ligand on murine dendritic cells. Int Immunol 14(3):275–286. https://doi.org/10.1093/intimm/14.3.275

    Article  CAS  PubMed  Google Scholar 

  53. Zhang B, Zhang Y, Niu L, Vella AT, Mittler RS (2010) Dendritic cells and Stat3 are essential for CD137-induced CD8 T cell activation-induced cell death. J Immunol 184(9):4770–4778. https://doi.org/10.4049/jimmunol.0902713

    Article  CAS  PubMed  Google Scholar 

  54. Zhang X, Voskens CJ, Sallin M, Maniar A, Montes CL, Zhang Y, Lin W, Li G, Burch E, Tan M, Hertzano R, Chapoval AI, Tamada K, Gastman BR, Schulze DH, Strome SE (2010) CD137 promotes proliferation and survival of human B cells. J Immunol 184(2):787–795. https://doi.org/10.4049/jimmunol.0901619

    Article  CAS  PubMed  Google Scholar 

  55. Schwarz H, Valbracht J, Tuckwell J, von Kempis J, Lotz M (1995) ILA, the human 4–1BB homologue, is inducible in lymphoid and other cell lineages. Blood 85(4):1043–1052 (Epub 1995/02/15 PubMed PMID: 7849293)

    Article  CAS  PubMed  Google Scholar 

  56. Biswas S, Mandal G, Payne KK, Anadon CM, Gatenbee CD, Chaurio RA, Costich TL, Moran C, Harro CM, Rigolizzo KE, Mine JA, Trillo-Tinoco J, Sasamoto N, Terry KL, Marchion D, Buras A, Wenham RM, Yu X, Townsend MK, Tworoger SS, Rodriguez PC, Anderson AR, Conejo-Garcia JR (2021) IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 591(7850):464–470. https://doi.org/10.1038/s41586-020-03144-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lovgren K, Warren S, Jirstrom K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jonsson G (2020) Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577(7791):561–571. https://doi.org/10.1038/s41586-019-1914-8

    Article  CAS  PubMed  Google Scholar 

  58. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, Gopalakrishnan V, Xi Y, Zhao H, Amaria RN, Tawbi HA, Cogdill AP, Liu W, LeBleu VS, Kugeratski FG, Patel S, Davies MA, Hwu P, Lee JE, Gershenwald JE, Lucci A, Arora R, Woodman S, Keung EZ, Gaudreau PO, Reuben A, Spencer CN, Burton EM, Haydu LE, Lazar AJ, Zapassodi R, Hudgens CW, Ledesma DA, Ong S, Bailey M, Warren S, Rao D, Krijgsman O, Rozeman EA, Peeper D, Blank CU, Schumacher TN, Butterfield LH, Zelazowska MA, McBride KM, Kalluri R, Allison J, Petitprez F, Fridman WH, Sautes-Fridman C, Hacohen N, Rezvani K, Sharma P, Tetzlaff MT, Wang L, Wargo JA (2020) B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577(7791):549–555. https://doi.org/10.1038/s41586-019-1922-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown DM, Fisher TL, Wei C, Frelinger JG, Lord EM (2001) Tumours can act as adjuvants for humoral immunity. Immunology 102(4):486–497. https://doi.org/10.1046/j.1365-2567.2001.01213.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregg RK (2021) Model Systems for the Study of Malignant Melanoma. Methods Mol Biol 2265:1–21. https://doi.org/10.1007/978-1-0716-1205-7_1 (PubMed PMID: 33704702)

    Article  CAS  PubMed  Google Scholar 

  61. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777–785. https://doi.org/10.1016/s0092-8674(88)91043-4 (PubMed PMID: 3261634)

    Article  CAS  PubMed  Google Scholar 

  62. Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S (2017) DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun 8:15618. https://doi.org/10.1038/ncomms15618

    Article  PubMed  PubMed Central  Google Scholar 

  63. Perez BA, Kim S, Wang M, Karimi AM, Powell C, Li J, Dilling TJ, Chiappori A, Latifi K, Rose T, Lannon A, MacMillan G, Saller J, Grass GD, Rosenberg S, Gray J, Haura E, Creelan B, Tanvetyanon T, Saltos A, Shafique M, Boyle TA, Schell MJ, Conejo-Garcia JR, Antonia SJ (2021) Prospective single-arm phase 1 and 2 Study: ipilimumab and Nivolumab with thoracic radiation therapy after platinum chemotherapy in extensive-stage small cell lung cancer. Int J Radiat Oncol Biol Phys 109(2):425–435. https://doi.org/10.1016/j.ijrobp.2020.09.031

    Article  PubMed  Google Scholar 

  64. Sharabi AB, Nirschl CJ, Kochel CM, Nirschl TR, Francica BJ, Velarde E, Deweese TL, Drake CG (2015) Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 3(4):345–355. https://doi.org/10.1158/2326-6066.CIR-14-0196

    Article  CAS  PubMed  Google Scholar 

  65. Clement LT (1992) Isoforms of the CD45 common leukocyte antigen family: markers for human T-cell differentiation. J Clin Immunol 12(1):1–10. https://doi.org/10.1007/BF00918266 (PubMed PMID: 1532395)

    Article  CAS  PubMed  Google Scholar 

  66. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO, Babb JS, Schneider RJ, Formenti SC, Dustin ML, Demaria S (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181(5):3099–3107. https://doi.org/10.4049/jimmunol.181.5.3099

    Article  CAS  PubMed  Google Scholar 

  67. Lee YH, Yu CF, Yang YC, Hong JH, Chiang CS (2021) Ablative radiotherapy reprograms the tumor microenvironment of a pancreatic tumor in favoring the immune checkpoint blockade therapy. Int J Mol Sci. https://doi.org/10.3390/ijms22042091

    Article  PubMed  PubMed Central  Google Scholar 

  68. Diamond JM, Vanpouille-Box C, Spada S, Rudqvist NP, Chapman JR, Ueberheide BM, Pilones KA, Sarfraz Y, Formenti SC, Demaria S (2018) Exosomes shuttle TREX1-sensitive IFN-stimulatory dsDNA from irradiated cancer cells to DCs. Cancer Immunol Res 6(8):910–920. https://doi.org/10.1158/2326-6066.CIR-17-0581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by K08 (5K08CA231454) Career Development Award supporting B.A.P.; and by R01CA124515 and R01CA240434 to JRCG. Support for Shared Resources was provided by Cancer Center Support Grant (CCSG) CA076292 to H. Lee Moffitt Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Alexandra Martin, Chase Powell, Derek Nichols, Pasquale Innamarato, Mate Nagy, Min-hsuan Wang, Bing Gong, Xianzhe Wang, Thomas Scheutz. The first draft of the manuscript was written by Alexandra Martin, Chase Powell, Sungjune Kim, Jose Conejo-Garcia and Bradford Perez. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bradford A. Perez.

Ethics declarations

Competing Interests

B.A.P has research funding (Bristol Myers Squibb) and has served on advisory board (AstraZeneca, G1 Therapeutics); all outside the submitted work. S. J. A. has served on advisory boards for Bristol Myers Squibb, Celsius, Merck, Samyang Biopharma, AstraZeneca/Medimmune; Consultant: Bristol Myers Squibb, Celsius, Merck, Samyang Biopharma, AstraZeneca/Medimmune, CBMG, Memgen, RAPT, Venn, Achilles Therapeutics, GlaxoSmithKline, Amgen; Scientific advisory board: CBMG, Memgen, RAPT, Venn, Achilles Therapeutics, GlaxoSmithKline, Amgen. J.R.C.G. has stock options in Compass Therapeutics, Anixa Biosciences and Alloy Therapeutics. He also receives consulting fees from Leidos, Alloy Therapeutics and Radyus Research; has sponsored research with Anixa Biosciences; and patent applications with Compass Therapeutics and Anixa Biosciences; all outside the submitted work.

Ethics approval

Animals for this study were maintained by the Moffitt Cancer Center animal facility according to the Association for Assessment and Accreditation of Laboratory Animal Care and National Institute of Health (NIH) standards. All experiments were conducted according to protocols approved by the Institutional Animal Care and Use Committee (IACUC) at the University of South Florida.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

262_2022_3325_MOESM1_ESM.tif

Supplementary file1(Supplementary Figure 1 Radiation-induced changes in CD8+ T cells at irradiated tumor sites, spleen, and irradiated draining lymph nodes of mice. (A) Flow cytometry analysis demonstrating no change in antigen exposed CD8+CD44+ T cells as a percent of CD8+ T cells at the irradiated tumor site compared to unirradiated control cohort. (B) slight increase in CD8+CD44+ T cells as a percent of CD8+ T cells in the peripheral spleen (C) no change in CD8+CD44+ T cells as a percent of CD8+ T cells is observed in the irradiated draining lymph nodes in B16-OVA mouse model described in Figure 1A. (D) Flow cytometry analysis demonstrating no significant increase in peripheral blood antigen-exposed CD8+CD45RA- memory T cells as a percent of CD8+ T cells following RT in patients with small cell lung cancer receiving thoracic RT as described in Figure 2D. Paired T test analyses of patient samples performed to compare Pre-RT and Post-RT time points across the study cohort) (TIF 24441 KB)

262_2022_3325_MOESM2_ESM.tif

Supplementary file2 (Supplementary Figure 2 4-1BB upregulation in peripheral blood lymphocyte subsets following thoracic RT (A-left) Flow cytometry analyses demonstrating increased % of 4-1BB+ peripheral non-Treg (Treg=CD4+CD25+CD127-) CD4+ T cells as a percent of non-Treg CD4+ T cells after RT in a representative patient with extensive stage small cell lung cancer receiving thoracic RT on clinical trial as described in Figure 2D. (A-right) Composite flow cytometry analysis demonstrating significant absolute changes from baseline of 4-1BB+ peripheral non-Treg CD4+ T cells following RT following RT in patients with small cell lung cancer receiving thoracic RT as described in Figure 2D. (B-left) Flow cytometry analyses demonstrating no change in 4-1BB+ peripheral Tregs (CD4+CD25+CD127-) in a representative patient with extensive stage small cell lung cancer receiving thoracic RT on clinical trial as described in Figure 2D. (B-right) Composite analysis demonstrating no change from baseline of 4-1BB+ peripheral non-Treg CD4+ T cells following RT. (C-left) Flow cytometry analyses demonstrating no change in 4-1BB+ B cells in a patient with extensive stage small cell lung cancer receiving thoracic RT on clinical trial as described in Figure 2D. (C-right) Composite analysis demonstrating no change of 4-1BB+ peripheral B cells as a percent of total B cells following RT in patients with small cell lung cancer receiving thoracic RT as described in Figure 2D. (D-left) Flow cytometry analyses demonstrating no change in 4-1BB+ CD8+ T cells as a percent of total CD8+ T cells in a representative patient with extensive stage small cell lung cancer receiving thoracic RT on clinical trial as described in Figure 2D. (D-right) Composite analysis demonstrating no change of 4-1BB+ peripheral 4-1BB+ CD8+ T cells as a percent of total CD8+ T cells following RT in patients with small cell lung cancer receiving thoracic RT as described in Figure 2D. Paired T test analyses of patient samples performed to compare Pre-RT and Post-RT time points across the study cohort) (TIF 22774 KB)

262_2022_3325_MOESM3_ESM.tif

Supplementary file3 (Supplementary Figure 3 RT alone and RT with 4-1BB agonism control tumor growth at irradiated tumor sites. (A)B16-OVA tumor growth in right flank of untreated mice. (B) Tumor growth curve of irradiated flank tumors in mice receiving ablative RT as outlined in Figure 1A. (C) Tumor growth of irradiated flank tumors in mice receiving ablative RT with combination of CTX-471-AF. (D) Right flank tumor growth curves of untreated mice inoculated with 10^6 Lewis lung carcinoma (LLC) cells. (E) Tumor growth curve of irradiated tumor flanks of mice that received ablative (8Gy x 3) RT treatment directed at the right tumor flank. (F) Tumor growth curve of irradiated tumors of mice that received a combination of RT with CTX-471-AF) (TIF 10012 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A.L., Powell, C., Nagy, M.Z. et al. Anti-4-1BB immunotherapy enhances systemic immune effects of radiotherapy to induce B and T cell-dependent anti-tumor immune activation and improve tumor control at unirradiated sites. Cancer Immunol Immunother 72, 1445–1460 (2023). https://doi.org/10.1007/s00262-022-03325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03325-y

Keywords

Navigation