Skip to main content

Advertisement

Log in

The tissue-resident marker CD103 on peripheral blood T cells predicts responses to anti-PD-1 therapy in gastric cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment. Since clinical benefits are limited to a subset of patients, we aimed to identify peripheral blood biomarkers that predict the efficacy of the anti-programmed cell death protein 1 (PD-1) antibody (nivolumab) in patients with gastric cancer.

Methods

We collected peripheral blood samples from gastric cancer patients (n = 29) before and after treatment with nivolumab and investigated the relationship between the frequency of surface or intracellular markers among nivolumab-binding PD-1+CD8+ T cells and treatment responses using multicolor flow cytometry. The tumors, lymph nodes, and peripheral blood of gastric cancer patients who underwent gastrectomy following nivolumab treatment were collected, and nivolumab-binding PD-1+CD8+ T cells in these tissue samples were characterized.

Results

Patients with a high frequency of CD103 among PD-1+CD8+ T cells in peripheral blood 2 weeks after the start of treatment had significantly better progression-free survival than the low group (P = 0.032). This CD103+PD-1+CD8+ T cell population mainly consisted of central memory T cells, showing the high expression of Ki-67 and few cytotoxic granules. In contrast, effector memory T cells were more frequently observed among CD103+PD-1+CD8+ T cells in tumors, which implied a change in the differentiated status of central memory T cells in lymph nodes and peripheral blood to effector memory T cells in tumors during the treatment with ICIs.

Conclusions

A high frequency of CD103 among PD-1+CD8+ T cells 2 weeks after nivolumab treatment in patients with advanced gastric cancer may be a useful biomarker for predicting the efficacy of anti-PD-1 therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078. https://doi.org/10.1016/j.immuni.2016.04.023

    Article  CAS  Google Scholar 

  2. Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. https://doi.org/10.1038/nrc.2016.36

    Article  CAS  Google Scholar 

  3. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 20:5064–5074. https://doi.org/10.1158/1078-0432.Ccr-13-3271

    Article  CAS  Google Scholar 

  4. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  Google Scholar 

  5. Kang YK, Boku N, Satoh T et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:2461–2471. https://doi.org/10.1016/s0140-6736(17)31827-5

    Article  CAS  Google Scholar 

  6. Kamphorst AO, Pillai RN, Yang S et al (2017) Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A 114:4993–4998. https://doi.org/10.1073/pnas.1705327114

    Article  CAS  Google Scholar 

  7. Kim KH, Cho J, Ku BM et al (2019) The first-week proliferative response of peripheral blood PD-1(+)CD8(+) T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin Cancer Res 25:2144–2154. https://doi.org/10.1158/1078-0432.Ccr-18-1449

    Article  CAS  Google Scholar 

  8. Kato R, Yamasaki M, Urakawa S et al (2018) Increased Tim-3(+) T cells in PBMCs during nivolumab therapy correlate with responses and prognosis of advanced esophageal squamous cell carcinoma patients. Cancer Immunol Immunother 67:1673–1683. https://doi.org/10.1007/s00262-018-2225-x

    Article  CAS  Google Scholar 

  9. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F (2018) Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 9:14. https://doi.org/10.3389/fimmu.2018.00014

    Article  CAS  Google Scholar 

  10. Osa A, Uenami T, Koyama S et al (2018) Clinical implications of monitoring nivolumab immunokinetics in non-small cell lung cancer patients. JCI Insight 3. https://doi.org/10.1172/jci.insight.59125

  11. Romero P, Zippelius A, Kurth I et al (2007) Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 178:4112–4119. https://doi.org/10.4049/jimmunol.178.7.4112

    Article  CAS  Google Scholar 

  12. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186:1407–1418. https://doi.org/10.1084/jem.186.9.1407

    Article  CAS  Google Scholar 

  13. Dieli F, Poccia F, Lipp M, Sireci G, Caccamo N, Di Sano C, Salerno A (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198:391–397. https://doi.org/10.1084/jem.20030235

    Article  CAS  Google Scholar 

  14. Caccamo N, Meraviglia S, Ferlazzo V, Angelini D, Borsellino G, Poccia F, Battistini L, Dieli F, Salerno A (2005) Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vgamma9Vdelta2 naive, memory and effector T cell subsets. Eur J Immunol 35:1764–1772. https://doi.org/10.1002/eji.200525983

    Article  CAS  Google Scholar 

  15. Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73:975–983. https://doi.org/10.1002/cyto.a.20643

    Article  Google Scholar 

  16. Odaira K, Kimura SN, Fujieda N, Kobayashi Y, Kambara K, Takahashi T, Izumi T, Matsushita H, Kakimi K (2016) CD27(-)CD45(+) γδ T cells can be divided into two populations, CD27(-)CD45(int) and CD27(-)CD45(hi) with little proliferation potential. Biochem Biophys Res Commun 478:1298–1303. https://doi.org/10.1016/j.bbrc.2016.08.115

    Article  CAS  Google Scholar 

  17. Kawazoe A, Shitara K, Boku N, Yoshikawa T, Terashima M (2021) Current status of immunotherapy for advanced gastric cancer. Jpn J Clin Oncol 51:20–27. https://doi.org/10.1093/jjco/hyaa202

    Article  Google Scholar 

  18. Fuchs CS, Doi T, Jang RW et al (2018) Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol 4:e180013. https://doi.org/10.1001/jamaoncol.2018.0013

    Article  Google Scholar 

  19. Shitara K, Özgüroğlu M, Bang YJ et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392:123–133. https://doi.org/10.1016/s0140-6736(18)31257-1

    Article  CAS  Google Scholar 

  20. Shitara K, Van Cutsem E, Bang YJ et al (2020) Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 Phase 3 randomized clinical trial. JAMA Oncol 6:1571–1580. https://doi.org/10.1001/jamaoncol.2020.3370

    Article  Google Scholar 

  21. Kawazoe A, Kuwata T, Kuboki Y et al (2017) Clinicopathological features of programmed death ligand 1 expression with tumor-infiltrating lymphocyte, mismatch repair, and Epstein-Barr virus status in a large cohort of gastric cancer patients. Gastric Cancer 20:407–415. https://doi.org/10.1007/s10120-016-0631-3

    Article  CAS  Google Scholar 

  22. Janjigian YY, Maron SB, Chatila WK et al (2020) First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol 21:821–831. https://doi.org/10.1016/s1470-2045(20)30169-8

    Article  CAS  Google Scholar 

  23. Mueller SN, Mackay LK (2016) Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 16:79–89. https://doi.org/10.1038/nri.2015.3

    Article  CAS  Google Scholar 

  24. Boutet M, Gauthier L, Leclerc M, Gros G, de Montpreville V, Théret N, Donnadieu E, Mami-Chouaib F (2016) TGFβ signaling intersects with CD103 integrin signaling to promote T-lymphocyte accumulation and antitumor activity in the lung tumor microenvironment. Cancer Res 76:1757–1769. https://doi.org/10.1158/0008-5472.Can-15-1545

    Article  CAS  Google Scholar 

  25. Li R, Liu H, Cao Y et al (2020) Identification and validation of an immunogenic subtype of gastric cancer with abundant intratumoural CD103(+)CD8(+) T cells conferring favourable prognosis. Br J Cancer 122:1525–1534. https://doi.org/10.1038/s41416-020-0813-y

    Article  CAS  Google Scholar 

  26. Mami-Chouaib F, Blanc C, Corgnac S, Hans S, Malenica I, Granier C, Tihy I, Tartour E (2018) Resident memory T cells, critical components in tumor immunology. J Immunother Cancer 6:87. https://doi.org/10.1186/s40425-018-0399-6

    Article  Google Scholar 

  27. Webb JR, Milne K, Watson P, Deleeuw RJ, Nelson BH (2014) Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res 20:434–444. https://doi.org/10.1158/1078-0432.Ccr-13-1877

    Article  CAS  Google Scholar 

  28. Djenidi F, Adam J, Goubar A, Durgeau A, Meurice G, de Montpréville V, Validire P, Besse B, Mami-Chouaib F (2015) CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol 194:3475–3486. https://doi.org/10.4049/jimmunol.1402711

    Article  CAS  Google Scholar 

  29. Wang P, Huang B, Gao Y, Yang J, Liang Z, Zhang N, Fu X, Li L (2018) CD103(+)CD8(+) T lymphocytes in non-small cell lung cancer are phenotypically and functionally primed to respond to PD-1 blockade. Cell Immunol 325:48–55. https://doi.org/10.1016/j.cellimm.2018.02.002

    Article  CAS  Google Scholar 

  30. Edwards J, Wilmott JS, Madore J et al (2018) CD103(+) Tumor-resident CD8(+) T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during Anti-PD-1 treatment. Clin Cancer Res 24:3036–3045. https://doi.org/10.1158/1078-0432.Ccr-17-2257

    Article  CAS  Google Scholar 

  31. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ (2017) Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 52:71–81. https://doi.org/10.1016/j.ctrv.2016.11.007

    Article  CAS  Google Scholar 

  32. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  Google Scholar 

  33. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199. https://doi.org/10.1056/NEJMoa1406498

    Article  CAS  Google Scholar 

  34. Duhen T, Duhen R, Montler R et al (2018) Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 9:2724. https://doi.org/10.1038/s41467-018-05072-0

    Article  CAS  Google Scholar 

  35. Balança CC, Salvioni A, Scarlata CM et al (2021) PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39+ CD4 T cells. JCI Insight 6. https://doi.org/10.1172/jci.insight.142513

  36. Ye Q, Song DG, Poussin M, Yamamoto T, Best A, Li C, Coukos G, Powell DJ Jr (2014) CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin Cancer Res 20:44–55. https://doi.org/10.1158/1078-0432.Ccr-13-0945

    Article  CAS  Google Scholar 

  37. Baumgaertner P, Jandus C, Rivals JP et al (2012) Vaccination-induced functional competence of circulating human tumor-specific CD8 T-cells. Int J Cancer 130:2607–2617. https://doi.org/10.1002/ijc.26297

    Article  CAS  Google Scholar 

  38. Webb JR, Milne K, Nelson BH (2015) PD-1 and CD103 are widely coexpressed on prognostically favorable intraepithelial CD8 T cells in human ovarian cancer. Cancer Immunol Res 3:926–935. https://doi.org/10.1158/2326-6066.Cir-14-0239

    Article  CAS  Google Scholar 

  39. Yang R, Cheng S, Luo N et al (2019) Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biol 21:2. https://doi.org/10.1186/s13059-019-1921-y

    Article  CAS  Google Scholar 

  40. Gros A, Parkhurst MR, Tran E et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22:433–438. https://doi.org/10.1038/nm.4051

    Article  CAS  Google Scholar 

  41. Ando M, Ito M, Srirat T, Kondo T, Yoshimura A (2020) Memory T cell, exhaustion, and tumor immunity. Immunol Med 43:1–9. https://doi.org/10.1080/25785826.2019.1698261

    Article  Google Scholar 

  42. Ribas A, Shin DS, Zaretsky J et al (2016) PD-1 blockade expands intratumoral memory T cells. Cancer Immunol Res 4:194–203. https://doi.org/10.1158/2326-6066.Cir-15-0210

    Article  CAS  Google Scholar 

  43. Takeuchi Y, Tanemura A, Tada Y, Katayama I, Kumanogoh A, Nishikawa H (2018) Clinical response to PD-1 blockade correlates with a sub-fraction of peripheral central memory CD4+ T cells in patients with malignant melanoma. Int Immunol 30:13–22. https://doi.org/10.1093/intimm/dxx073

    Article  CAS  Google Scholar 

  44. Caushi JX, Zhang J, Ji Z et al (2021) Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers. Nature 596:126–132. https://doi.org/10.1038/s41586-021-03752-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients who contributed to this study. We thank M. Matsumoto and K. Goto for their help.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YN, TS, and HW contributed to the conception or design of the work. YN, TS, and KY performed the experiments. MH and AU helped perform the experiments. YN, TS, YD, and HW collected data and all authors analyzed data. YN drafted the article. TS, YD, and HW helped finalize the article. All authors have read and approved the final article. All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

Corresponding author

Correspondence to Takuro Saito.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

All procedures were in accordance with the Helsinki Declaration. The Human Ethics Review Committee of Osaka University Graduate School of Medicine approved the protocol for this study.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nose, Y., Saito, T., Yamamoto, K. et al. The tissue-resident marker CD103 on peripheral blood T cells predicts responses to anti-PD-1 therapy in gastric cancer. Cancer Immunol Immunother 72, 169–181 (2023). https://doi.org/10.1007/s00262-022-03240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-022-03240-2

Keywords

Navigation