Skip to main content

Advertisement

Log in

Modulation of CD47-SIRPα innate immune checkpoint axis with Fc-function detuned anti-CD47 therapeutic antibody

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cluster of differentiation 47 (CD47) is a transmembrane protein ubiquitously expressed on human cells but overexpressed on many different tumor cells. The interaction of CD47 with signal-regulatory protein alpha (SIRPα) triggers a “don’t eat me” signal to the macrophage, inhibiting phagocytosis. Thus, overexpression of CD47 enables tumor cells to escape from immune surveillance via the blockade of phagocytic mechanisms. We report here the development and characterization of CC-90002, a humanized anti-CD47 antibody. CC-90002 is unique among previously reported anti-CD47 bivalent antibodies that it does not promote hemagglutination while maintaining high-affinity binding to CD47 and inhibition of the CD47–SIRPα interaction. Studies in a panel of hematological cancer cell lines showed concentration-dependent CC-90002-mediated phagocytosis in acute lymphoblastic leukemia, acute myeloid leukemia (AML), lenalidomide-resistant multiple myeloma (MM) cell lines and AML cells from patients. In vivo studies with MM cell line-derived xenograft models established in immunodeficient mice demonstrated significant dose-dependent antitumor activity of CC-90002. Treatment with CC-90002 significantly prolonged survival in an HL-60-disseminated AML model. Mechanistic studies confirmed the binding of CC-90002 to tumor cells and concomitant recruitment of F4-80 positive macrophages into the tumor and an increase in expression of select chemokines and cytokines of murine origin. Furthermore, the role of macrophages in the CC-90002-mediated antitumor activity was demonstrated by transient depletion of macrophages with liposome-clodronate treatment. In non-human primates, CC-90002 displayed acceptable pharmacokinetic properties and a favorable toxicity profile. These data demonstrate the potential activity of CC-90002 across hematological malignancies and provided basis for clinical studies CC-90002-ST-001 (NCT02367196) and CC-90002-AML-001 (NCT02641002).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source of CD47. Data were normalized to a no antibody control. E. CC-90002 does not promote hemagglutination of human RBCs. Human RBCs were treated with a titration of CD47 antibodies. Evidence of hemagglutination was demonstrated by the presence of non-settled RBCs, appearing as a haze compared to a punctate red dot of non-hemagglutinated RBCs. The anti-CD47 antibody 9E4 was a positive control. 2A1m and 2A1-xi (chimeric): murine anti-CD47 antibodies. QN-IgG1 and QN-IgG4P: variants of CC-90002

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharpe AH, Pauken KE (2018) The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153–167. https://doi.org/10.1038/nri.2017.108

    Article  CAS  PubMed  Google Scholar 

  2. Taylor PR, Martinez-Pomares L, Stcey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Ann Rev Immunol 23:901–944. https://doi.org/10.1146/annurev.immunol.23.021704.115816

    Article  CAS  Google Scholar 

  3. Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU et al (2018) Blocking “don’t eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev 32:480–489. https://doi.org/10.1016/j.blre.2018.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matlung HL, Szilagyi K, Barclay NA, van den Berg TK (2017) The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 276:145–164. https://doi.org/10.1111/imr.12527

    Article  CAS  PubMed  Google Scholar 

  5. Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N et al (1996) A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 16:6887–6899. https://doi.org/10.1128/mcb.16.12.6887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kikuchi Y, Uno S, Kinoshita Y, Yoshimura Y, Iida S-i, Wakahara Y et al (2005) Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma. Leukemia Res 29:445–450. https://doi.org/10.1016/j.leukres.2004.09.005

    Article  CAS  Google Scholar 

  7. Yuan J, He H, Chen C, Wu J, Rao J, Yan H (2019) Combined high expression of CD47 and CD68 is a novel prognostic factor for breast cancer patients. Cancer Cell Int 11(19):238. https://doi.org/10.1186/s12935-019-0957-0

    Article  CAS  Google Scholar 

  8. Yoshida K, Tsujimoto H, Matsumura K, Kinoshita M, Takahata R, Matsumoto Y et al (2015) CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med 4:1322–1333. https://doi.org/10.1002/cam4.478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al (2009) CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–299. https://doi.org/10.1016/j.cell.2009.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galli S, Zlobec I, Schürch C, Perren A, Ochsenbein AF, Banz Y (2015) CD47 protein expression in acute myeloid leukemia: a tissue microarray-based analysis. Leuk Res 39:749–756. https://doi.org/10.1016/j.leukres.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  11. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al (2012) The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109:6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Wang L, Zhao F, Tseng S, Narayan C, Shura L et al (2015) Pre-Clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS ONE. https://doi.org/10.1371/journal.pone.0137345

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weiskopf K, Jahchan NS, Schnorr PJ, Cristea S, Ring AM, Maute RL et al (2016) CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest 126:2610–2620. https://doi.org/10.1172/JCI81603

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer J, George BM et al (2017) Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci USA 114:E10578-10585. https://doi.org/10.1073/pnas.1710877114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petrova PS, Viller NN, Wong M, Pang X, Lin GHY, Dodge K et al (2017) TTI-621 (SIRPαFc): a CD47-blocking innate immune checkpoint inhibitor with broad antitumor activity and minimal erythrocyte binding. Clin Cancer Res 23:1068–1079. https://doi.org/10.1158/1078-0432.CCR-16-1700

    Article  CAS  PubMed  Google Scholar 

  16. Uno S, Kinoshita Y, Azuma Y, Tsunenari T, Yoshimura Y, Iida S et al (2007) Antitumor activity of a monoclonal antibody against CD47 in xenograft models of human leukemia. Oncol Rep 17:1189–1194

    CAS  PubMed  Google Scholar 

  17. Murata Y, Saito Y, Kotani T et al (2018) CD47-Signal regulatory protein α signaling system and its application to cancer immunotherapy. Cancer Sci 109:2349–2357. https://doi.org/10.1111/cas.13663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT et al (2020) Development of AO-176, a next-generation humanized anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther 19:835–846. https://doi.org/10.1158/1535-7163.MCT-19-1079

    Article  CAS  PubMed  Google Scholar 

  19. Peluso MO, Adam A, Armet CM, Zhang L, O’Conner RW, Lee BH et al (2020) The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J ImmunoTherapy Cancer 8:e000413. https://doi.org/10.1136/jitc-2019-000413

    Article  Google Scholar 

  20. Lin GHY, Chai V, Lee V et al (2017) TTI-621 (SIRPαFc), a CD47-blocking cancer immunotherapeutic, triggers phagocytosis of lymphoma cells by multiple polarized macrophage subsets. PLoS ONE 12:e0187262. https://doi.org/10.1371/journal.pone.0187262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S et al (2017) Targeting CD47 and autophagy elicited enhanced antitumor effects in non-small cell lung cancer. Cancer Immunol Res 5:363–375. https://doi.org/10.1158/2326-6066.CIR-16-0398

    Article  CAS  PubMed  Google Scholar 

  22. Ma L, Zhu M, Gai J, Li G, Chang Q, Qiao P et al (2020) Preclinical development of a novel CD47 nanobody with less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology 18:12. https://doi.org/10.1186/s12951-020-0571-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB et al (2013) Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci USA 110:11103–11108. https://doi.org/10.1073/pnas.1305569110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Veillette A, Tang Z (2019) Signaling regulatory protein (SIRP)α-CD47 blockade joins the ranks of immune checkpoint inhibition. J Clin Oncol 37:1012–1014. https://doi.org/10.1200/JCO.19.00121

    Article  CAS  PubMed  Google Scholar 

  25. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP (2000) Role of CD47 as a marker of self on red blood cells. Science 288:2051–2054. https://doi.org/10.1126/science.288.5473.2051

    Article  CAS  PubMed  Google Scholar 

  26. Veillette A, Chen J (2018) SIRPα-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 39:173–184. https://doi.org/10.1016/j.it.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  27. Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR et al (2019) First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol 37(12):946–953. https://doi.org/10.1200/JCO.18.02018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Narla RK, Modi H, Wong L, Abassian M, Bauer, D, Desai P, et al (2017) The humanized anti‐CD47 monoclonal antibody, CC‐90002, has antitumor activity in vitro and in vivo. In: Proceedings: AACR Annual Meeting Abstract 4694

  29. Kippartick KE, Wring SA, Walker DH, Macklin MD, Payne JA, Su JL et al (1997) Rapid development of affinity matured monoclonal antibodies using RIMMS. Hybridoma 16(4):381–389. https://doi.org/10.1089/hyb.1997.16.381

    Article  Google Scholar 

  30. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J et al (2012) Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 26:2326–2335. https://doi.org/10.1038/leu.2012.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Labrijn AF, Buijsse AO, van den Bremer ET, Verwilligen AY, Bleeker WK, Thorpe SJ et al (2009) Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 27:767–771. https://doi.org/10.1038/nbt.1553

    Article  CAS  PubMed  Google Scholar 

  32. Kikuchi Y, Uno S, Yoshimura Y, Otabe K, Iida S, Oheda M et al (2004) A bivalent single-chain Fv fragment against CD47 induces apoptosis for leukemic cells. Biochem Biophys Res Commun 315:912–918. https://doi.org/10.1016/j.bbrc.2004.01.128

    Article  CAS  PubMed  Google Scholar 

  33. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. https://doi.org/10.1155/2012/948098

    Article  PubMed  PubMed Central  Google Scholar 

  34. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. https://doi.org/10.1146/annurev.immunol.021908.132532

    Article  CAS  PubMed  Google Scholar 

  35. Nardin A, Abastado JP (2008) Macrophages and cancer. Front Biosci 13:3494–3505. https://doi.org/10.2741/2944

    Article  CAS  PubMed  Google Scholar 

  36. Mukaida N, Sasaki S, Baba T (2014) Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediators Inflamm 2014:170381. https://doi.org/10.1155/2014/170381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Subramanian S, Parthasarathy R, Sen S, Boder ET, Discher DE (2006) Species- and cell type-specific interactions between CD47 and human SIRPalpha. Blood 107:2548–2556. https://doi.org/10.1182/blood-2005-04-1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manna PP, Frazier WA (2004) CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 64:1026–1036. https://doi.org/10.1158/0008-5472.can-03-1708

    Article  CAS  PubMed  Google Scholar 

  39. Leclair P, Lim CJ (2020) CD47 (Cluster of differentiation 47): an anti-phagocytic receptor with a multitude of signaling functions. Anim Cells Syst (Seoul) 24:243–252. https://doi.org/10.1080/19768354.2020.1818618

    Article  CAS  Google Scholar 

  40. Zhu YX, Shi CX, Bruins LA, Wang X, Riggs DL, Porter B et al (2019) Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J 9:19. https://doi.org/10.1038/s41408-019-0173-0

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sallman DA, Asch AS, Lee A, Donnellan WB, Marcucci G et al (2019) The first-in-class anti-CD47 antibody Magrolimab (5F9) in combination with azacitidine is effective in MDS and AML patients: Ongoing Phase 1b results. Blood 134(Suppl-1):569

    Article  Google Scholar 

  42. Opperman KS, Vandyke K, Clark KC, Coulter EA, Hewett DR, Mrozik KM et al (2019) Clodronate-liposome mediated macrophage depletion abrogates multiple myeloma tumor establishment in vivo. Neoplasia 21:777–787. https://doi.org/10.1016/j.neo.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iwamoto C, Takenaka K, Urata S et al (2014) The BALB/c-specific polymorphic SIRPa enhances its affinity for human CD47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment. Exp Hematol 42:163–171. https://doi.org/10.1016/j.exphem.2013.11.005

    Article  CAS  PubMed  Google Scholar 

  44. Myers LM, Tal MC, Torrez Dulgeroff LB et al (2019) A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nat Commun 10:794. https://doi.org/10.1038/s41467-019-08637-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deuse T, Hu X, Agbor-Enoh S et al (2021) The SIRPa-CD47 checkpoint in NK cells. J Exp Med 218:e20200839. https://doi.org/10.1084/jem.20200839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank other team members from Celgene Corporation, including John Boylan, WenQing Yang, Maria Wang and Dale Baker for their contributions to the strategy and execution of the experiments

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Krishna Narla.

Ethics declarations

Conflict of interest

The authors declare no conflicts or competing of interests.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 1028 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narla, R.K., Modi, H., Bauer, D. et al. Modulation of CD47-SIRPα innate immune checkpoint axis with Fc-function detuned anti-CD47 therapeutic antibody. Cancer Immunol Immunother 71, 473–489 (2022). https://doi.org/10.1007/s00262-021-03010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-03010-6

Keywords

Navigation