Skip to main content

Advertisement

Log in

Gastric cancer-derived exosomal miR-135b-5p impairs the function of Vγ9Vδ2 T cells by targeting specificity protein 1

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Recent studies have shown that tumor-derived exosomes participate in the communication between tumor cells and their microenvironment and mediate malignant biological behaviors including immune escape. In this study, we found that gastric cancer (GC) cell-derived exosomes could be effectively uptaken by Vγ9Vδ2 T cells, decrease the cell viability of Vγ9Vδ2 T cells, induce apoptosis, and reduce the production of cytotoxic cytokines IFN-γ and TNF-α. Furthermore, we demonstrated that exosomal miR-135b-5p was delivered into Vγ9Vδ2 T cells. Exosomal miR-135b-5p impaired the function of Vγ9Vδ2 T cells by targeting specificity protein 1 (SP1). More importantly, blocking the SP1 function by Plicamycin, an SP1 inhibitor, abolished the effect of stable miR-135b-5p knockdown GC cell-derived exosomes on Vγ9Vδ2 T cell function. Collectively, our results suggest that GC cell-derived exosomes impair the function of Vγ9Vδ2 T cells via miR-135b-5p/SP1 pathway, and targeting exosomal miR-135b-5p/SP1 axis may improve the efficiency of GC immunotherapy based on Vγ9Vδ2 T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68 (6):394–424. doi:https://doi.org/10.3322/caac.21492

  2. Feng R, Zong Y, Cao S, Xu R (2019) Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics? Cancer communications (London, England) 39(1):22. https://doi.org/10.1186/s40880-019-0368-6

    Article  Google Scholar 

  3. Coutzac C, Pernot S, Chaput N, Zaanan A (2019) Immunotherapy in advanced gastric cancer, is it the future? Crit Rev Oncol Hematol 133:25–32. https://doi.org/10.1016/j.critrevonc.2018.10.007

    Article  CAS  PubMed  Google Scholar 

  4. Olino K, Park T, Ahuja N (2020) Exposing hidden targets: combining epigenetic and immunotherapy to overcome cancer resistance. Semin Cancer Biol 65:114–122. https://doi.org/10.1016/j.semcancer.2020.01.001

    Article  CAS  PubMed  Google Scholar 

  5. Matsueda S, Graham D (2014) Immunotherapy in gastric cancer. World J Gastroenterol 20(7):1657–1666. https://doi.org/10.3748/wjg.v20.i7.1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim T, da Silva E, Coit D, Tang L (2019) Intratumoral immune response to gastric cancer varies by molecular and histologic subtype. Am J Surg Pathol 43(6):851–860. https://doi.org/10.1097/pas.0000000000001253

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jones J, Smyth E (2020) Gastroesophageal cancer: Navigating the immune and genetic terrain to improve clinical outcomes. Cancer Treat Rev 84:101950. https://doi.org/10.1016/j.ctrv.2019.101950

    Article  CAS  PubMed  Google Scholar 

  8. Girardi M (2006) Immunosurveillance and immunoregulation by gammadelta T cells. J Invest Dermatol 126(1):25–31. https://doi.org/10.1038/sj.jid.5700003

    Article  CAS  PubMed  Google Scholar 

  9. Gentles A, Newman A, Liu C, Bratman S, Feng W, Kim D, Nair V, Xu Y, Khuong A, Hoang C, Diehn M, West R, Plevritis S, Alizadeh A (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945. https://doi.org/10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisher J, Anderson J (2018) Engineering approaches in human gamma delta T cells for cancer immunotherapy. Front Immunol 9:1409. https://doi.org/10.3389/fimmu.2018.01409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joalland N, Lafrance L, Oullier T, Marionneau-Lambot S, Loussouarn D, Jarry U, Scotet E (2019) in vivoCombined chemotherapy and allogeneic human Vγ9Vδ2 T lymphocyte-immunotherapies efficiently control the development of human epithelial ovarian cancer cells. Oncoimmunology 8(11):e1649971. https://doi.org/10.1080/2162402x.2019.1649971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zysk A, DeNichilo M, Panagopoulos V, Zinonos I, Liapis V, Hay S, Ingman W, Ponomarev V, Atkins G, Findlay D, Zannettino A, Evdokiou A (2017) Adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells in combination with zoledronic acid inhibits cancer growth and limits osteolysis in a murine model of osteolytic breast cancer. Cancer Lett 386:141–150. https://doi.org/10.1016/j.canlet.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  13. Wada I, Matsushita H, Noji S, Mori K, Yamashita H, Nomura S, Shimizu N, Seto Y, Kakimi K (2014) Intraperitoneal injection of in vitro expanded Vγ9Vδ2 T cells together with zoledronate for the treatment of malignant ascites due to gastric cancer. Cancer Med 3(2):362–375. https://doi.org/10.1002/cam4.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colombo M, Raposo G, Théry C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  PubMed  Google Scholar 

  15. Qu J, Qu X, Zhao M, Teng Y, Zhang Y, Hou K, Jiang Y, Yang X, Liu Y (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver 41(12):875–880. https://doi.org/10.1016/j.dld.2009.04.006

    Article  CAS  Google Scholar 

  16. Liu D, Li C, Trojanowicz B, Li X, Shi D, Zhan C, Wang Z, Chen L (2016) CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association 19(3):754–766. https://doi.org/10.1007/s10120-015-0523-y

    Article  CAS  Google Scholar 

  17. Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, Wang M, Zhu W, Qian H, Xu W (2015) Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell cycle (Georgetown, Tex) 14(15):2473–2483. https://doi.org/10.1080/15384101.2015.1005530

    Article  CAS  Google Scholar 

  18. Wang F, Li B, Wei Y, Zhao Y, Wang L, Zhang P, Yang J, He W, Chen H, Jiao Z, Li Y (2018) Tumor-derived exosomes induce PD1 macrophage population in human gastric cancer that promotes disease progression. Oncogenesis 7(5):41. https://doi.org/10.1038/s41389-018-0049-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren W, Zhang X, Li W, Feng Q, Feng H, Tong Y, Rong H, Wang W, Zhang D, Zhang Z, Tu S, Zhu X, Zhang Q (2019) Exosomal miRNA-107 induces myeloid-derived suppressor cell expansion in gastric cancer. Cancer management and research 11:4023–4040. https://doi.org/10.2147/cmar.S198886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ni C, Fang Q, Chen W, Jiang J, Jiang Z, Ye J, Zhang T, Yang L, Meng F, Xia W, Zhong M, Huang J (2020) Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+γδ1 Treg cells. Signal Transduct Target Ther 5(1):41. https://doi.org/10.1038/s41392-020-0129-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J, Zhu G (2019) Microenvironmental oxygen pressure orchestrates an anti- and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene 38(15):2830–2843. https://doi.org/10.1038/s41388-018-0627-z

    Article  CAS  PubMed  Google Scholar 

  22. Feng C, She J, Chen X, Zhang Q, Zhang X, Wang Y, Ye J, Shi J, Tao J, Feng M, Guan W, Xia H, Zhang W, Xu G (2019) Exosomal miR-196a-1 promotes gastric cancer cell invasion and metastasis by targeting SFRP1. Nanomedicine (Lond) 14(19):2579–2593. https://doi.org/10.2217/nnm-2019-0053

    Article  CAS  Google Scholar 

  23. O’Connell R, Rao D, Chaudhuri A, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122. https://doi.org/10.1038/nri2708

    Article  CAS  PubMed  Google Scholar 

  24. Xie Y, Dang W, Zhang S, Yue W, Yang L, Zhai X, Yan Q, Lu J (2019) The role of exosomal noncoding RNAs in cancer. Mol Cancer 18(1):37. https://doi.org/10.1186/s12943-019-0984-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K (2020) The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 13(1):25. https://doi.org/10.1186/s13045-020-00848-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shi Y, Zhang J, Mao Z, Jiang H, Liu W, Shi H, Ji R, Xu W, Qian H, Zhang X (2020) Extracellular vesicles from gastric cancer cells induce pd-l1 expression on neutrophils to suppress T-cell Immunity. Front Oncol 10:629. https://doi.org/10.3389/fonc.2020.00629

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen C, Luo F, Liu X, Lu L, Xu H, Yang Q, Xue J, Shi L, Li J, Zhang A, Liu Q (2017) NF-kB-regulated exosomal miR-155 promotes the inflammation associated with arsenite carcinogenesis. Cancer Lett 388:21–33. https://doi.org/10.1016/j.canlet.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  28. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 285(23):17442–17452. https://doi.org/10.1074/jbc.M110.107821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W (2018) Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 17(1):147. https://doi.org/10.1186/s12943-018-0897-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Z, Gao Y, Gao S, Song D, Feng Y (2020) MiR-135b-5p promotes viability, proliferation, migration and invasion of gastric cancer cells by targeting Krüppel-like factor 4 (KLF4). Archives of medical science : AMS 16(1):167–176. https://doi.org/10.5114/aoms.2019.87761

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Mao H, Zhang S, Sun L, Zhang W, Chen Q, Wang L, Liu H (2020) lncRNA PCAT18 inhibits proliferation, migration and invasion of gastric cancer cells through miR-135b suppression to promote CLDN11 expression. Life Sci 249:117478. https://doi.org/10.1016/j.lfs.2020.117478

    Article  CAS  PubMed  Google Scholar 

  32. Bai M, Li J, Yang H, Zhang H, Zhou Z, Deng T, Zhu K, Ning T, Fan Q, Ying G, Ba Y (2019) miR-135b delivered by gastric tumor exosomes inhibits FOXO1 expression in endothelial cells and promotes angiogenesis. Molecular therapy : the journal of the American Society of Gene Therapy 27(10):1772–1783. https://doi.org/10.1016/j.ymthe.2019.06.018

    Article  CAS  Google Scholar 

  33. Cheng H, Chen L, Hu X, Qiu H, Xu X, Gao L, Tang G, Zhang W, Wang J, Yang J, Huang C (2019) Knockdown of MAML1 inhibits proliferation and induces apoptosis of T-cell acute lymphoblastic leukemia cells through SP1-dependent inactivation of TRIM59. J Cell Physiol 234(4):5186–5195. https://doi.org/10.1002/jcp.27323

    Article  CAS  PubMed  Google Scholar 

  34. Yao Y, Hu J, Shen Z, Yao R, Liu S, Li Y, Cong H, Wang X, Qiu W, Yue L (2015) MiR-200b expression in breast cancer: a prognostic marker and act on cell proliferation and apoptosis by targeting Sp1. J Cell Mol Med 19(4):760–769. https://doi.org/10.1111/jcmm.12432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koyama D, Kikuchi J, Hiraoka N, Wada T, Kurosawa H, Chiba S, Furukawa Y (2014) Proteasome inhibitors exert cytotoxicity and increase chemosensitivity via transcriptional repression of Notch1 in T-cell acute lymphoblastic leukemia. Leukemia 28(6):1216–1226. https://doi.org/10.1038/leu.2013.366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu J, Wei M, Boyd Z, Lehmann E, Trotta R, Mao H, Liu S, Becknell B, Jaung M, Jarjoura D, Marcucci G, Wu L, Caligiuri M (2007) Transcriptional control of human T-BET expression: the role of Sp1. Eur J Immunol 37(9):2549–2561. https://doi.org/10.1002/eji.200737088

    Article  CAS  PubMed  Google Scholar 

  37. Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X, Zhang G, Chen W (2020) B7–H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells. Oncoimmunology 9(1):1748991. https://doi.org/10.1080/2162402x.2020.1748991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fisher J, Heuijerjans J, Yan M, Gustafsson K, Anderson J (2014) γδ T cells for cancer immunotherapy: a systematic review of clinical trials. Oncoimmunology 3(1):e27572. https://doi.org/10.4161/onci.27572

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lafont V, Sanchez F, Laprevotte E, Michaud H, Gros L, Eliaou J, Bonnefoy N (2014) Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Front Immunol 5:622. https://doi.org/10.3389/fimmu.2014.00622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hoeres T, Smetak M, Pretscher D, Wilhelm M (2018) Improving the efficiency of Vγ9Vδ2 T-cell immunotherapy in cancer. Front Immunol 9:800. https://doi.org/10.3389/fimmu.2018.00800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nicol A, Tokuyama H, Mattarollo S, Hagi T, Suzuki K, Yokokawa K, Nieda M (2011) Clinical evaluation of autologous gamma delta T cell-based immunotherapy for metastatic solid tumours. Br J Cancer 105(6):778–786. https://doi.org/10.1038/bjc.2011.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Noguchi A, Kaneko T, Kamigaki T, Fujimoto K, Ozawa M, Saito M, Ariyoshi N, Goto S (2011) Zoledronate-activated Vγ9γδ T cell-based immunotherapy is feasible and restores the impairment of γδ T cells in patients with solid tumors. Cytotherapy 13(1):92–97. https://doi.org/10.3109/14653249.2010.515581

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Niu C, Cui J (2018) Gamma-delta (γδ) T cells: friend or foe in cancer development? J Transl Med 16(1):3. https://doi.org/10.1186/s12967-017-1378-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maybruck B, Pfannenstiel L, Diaz-Montero M, Gastman B (2017) Tumor-derived exosomes induce CD8 T cell suppressors. J Immunother Cancer 5(1):65. https://doi.org/10.1186/s40425-017-0269-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vignard V, Labbé M, Marec N, André-Grégoire G, Jouand N, Fonteneau J, Labarrière N, Fradin D (2020) MicroRNAs in tumor exosomes drive immune escape in melanoma. Cancer Immunol Res 8(2):255–267. https://doi.org/10.1158/2326-6066.Cir-19-0522

    Article  CAS  PubMed  Google Scholar 

  46. Liu F, Bu Z, Zhao F, Xiao D (2018) Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci 109(1):65–73. https://doi.org/10.1111/cas.13429

    Article  CAS  PubMed  Google Scholar 

  47. Whiteside T (2016) Exosomes and tumor-mediated immune suppression. J Clin Investig 126(4):1216–1223. https://doi.org/10.1172/jci81136

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang Y, Liu K, Li Q, Yao Y, Wang Y (2018) Exosomes function in tumor immune microenvironment. Adv Exp Med Biol 1056:109–122. https://doi.org/10.1007/978-3-319-74470-4_7

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L, Qiu Z (2018) Hypoxic tumor-derived exosomal mir-301a mediates m2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Can Res 78(16):4586–4598. https://doi.org/10.1158/0008-5472.Can-17-3841

    Article  CAS  Google Scholar 

  50. Mrizak D, Martin N, Barjon C, Jimenez-Pailhes A, Mustapha R, Niki T, Guigay J, Pancré V, de Launoit Y, Busson P, Moralès O, Delhem N (2015) Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst 107(1):363. https://doi.org/10.1093/jnci/dju363

    Article  CAS  PubMed  Google Scholar 

  51. Wu Y, Hu G, Wu R, Gong N (2020) High expression of miR-135b predicts malignant transformation and poor prognosis of gastric cancer. Life Sci 257:118133. https://doi.org/10.1016/j.lfs.2020.118133

    Article  CAS  PubMed  Google Scholar 

  52. Han T, Voon D, Oshima H, Nakayama M, Echizen K, Sakai E, Yong Z, Murakami K, Yu L, Minamoto T, Ock C, Jenkins B, Kim S, Yang H, Oshima M (2019) Interleukin 1 Up-regulates MicroRNA 135b to promote inflammation-associated gastric carcinogenesis in mice. Gastroenterology 156(4):1140-1155.e1144. https://doi.org/10.1053/j.gastro.2018.11.059

    Article  CAS  PubMed  Google Scholar 

  53. Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, Peek R, Zhang S, El-Rifai W (2019) Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 33(1):264–274. https://doi.org/10.1096/fj.201701456RR

    Article  CAS  Google Scholar 

  54. Huang J, Shen M, Yan M, Cui Y, Gao Z, Meng X (2019) Exosome-mediated transfer of miR-1290 promotes cell proliferation and invasion in gastric cancer via NKD1. Acta Biochim Biophys Sin 51(9):900–907. https://doi.org/10.1093/abbs/gmz077

    Article  CAS  PubMed  Google Scholar 

  55. Li Q, Li B, Li Q, Wei S, He Z, Huang X, Wang L, Xia Y, Xu Z, Li Z, Wang W, Yang L, Zhang D, Xu Z (2018) Exosomal miR-21-5p derived from gastric cancer promotes peritoneal metastasis via mesothelial-to-mesenchymal transition. Cell Death Dis 9(9):854. https://doi.org/10.1038/s41419-018-0928-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang H, Fu H, Wang B, Zhang X, Mao J, Li X, Wang M, Sun Z, Qian H, Xu W (2018) Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog 57(9):1223–1236. https://doi.org/10.1002/mc.22838

    Article  CAS  PubMed  Google Scholar 

  57. Liu X, Lu Y, Xu Y, Hou S, Huang J, Wang B, Zhao J, Xia S, Fan S, Yu X, Du Y, Hou L, Li Z, Ding Z, An S, Huang B, Li L, Tang J, Ju J, Guan H, Song B (2019) Exosomal transfer of miR-501 confers doxorubicin resistance and tumorigenesis via targeting of BLID in gastric cancer. Cancer Lett 459:122–134. https://doi.org/10.1016/j.canlet.2019.05.035

    Article  CAS  PubMed  Google Scholar 

  58. Yang H, Zhang H, Ge S, Ning T, Bai M, Li J, Li S, Sun W, Deng T, Zhang L, Ying G, Ba Y (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting c-myb in vascular endothelial cells. Molecular therapy : the journal of the American Society of Gene Therapy 26(10):2466–2475. https://doi.org/10.1016/j.ymthe.2018.07.023

    Article  CAS  Google Scholar 

  59. Zhou Z, Zhang H, Deng T, Ning T, Liu R, Liu D, Bai M, Ying G, Ba Y (2019) Exosomes carrying MicroRNA-155 target forkhead box O3 of endothelial cells and promote angiogenesis in gastric cancer. Molecular therapy oncolytics 15:223–233. https://doi.org/10.1016/j.omto.2019.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Black A, Black J, Azizkhan-Clifford J (2001) Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188(2):143–160. https://doi.org/10.1002/jcp.1111

    Article  CAS  PubMed  Google Scholar 

  61. Wang R, Xu B, Xu H (2018) TGF-β1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell cycle (Georgetown, Tex) 17 (24) doi:https://doi.org/10.1080/15384101.2018.1556063

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81802843, 82073156, 81672372); Suzhou Science & Technology plan project (SYS2019035, SS2019077).

Author information

Authors and Affiliations

Authors

Contributions

JL, TS, and WC designed the experiments; JL, LS, YC, and JZ performed most of the experiments; JS, JW, and GZ assisted with experiments and analysis of the data; MW and YG contributed to provide clinical samples; JL, TS, and WC wrote the manuscript.

Corresponding authors

Correspondence to Tongguo Shi or Weichang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sun, L., Chen, Y. et al. Gastric cancer-derived exosomal miR-135b-5p impairs the function of Vγ9Vδ2 T cells by targeting specificity protein 1. Cancer Immunol Immunother 71, 311–325 (2022). https://doi.org/10.1007/s00262-021-02991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02991-8

Keywords

Navigation