Skip to main content

Advertisement

Log in

RB1CC1 functions as a tumor-suppressing gene in renal cell carcinoma via suppression of PYK2 activity and disruption of TAZ-mediated PDL1 transcription activation

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Rb1-inducible coiled-coil 1 (RB1CC1) has been demonstrated to function as an inhibitor of proline-rich/Ca-activated tyrosine kinase 2 (PYK2) by binding to the kinase domain of PYK2, which promotes the proliferation, invasion, and migration of renal cell carcinoma (RCC) cells. Additionally, in breast cancer, PYK2 positively regulates the expression of transcriptional co-activator with PDZ-binding motif (TAZ) which in turn can enhance PDL1 levels in breast and lung cancer cells. The current study was performed to decipher the impact of RB1CC1 in the progression of RCC via regulation of the PYK2/TAZ/PDL1 signaling axis. Expression of RB1CC1 and PYK2 was quantified in clinical tissue samples from RCC patients. The relationship between TAZ and PYK2, TAZ and PDL1 was then validated. The cellular processes of doxorubicin (DOX)-induced human RCC cell lines including the abilities of proliferation, colony formation, sphere formation and apoptosis, as well as the tumorigenicity of transfected cells, were evaluated after the alteration of RB1CC1 expression. RB1CC1 exhibited decreased expression in RCC tissues and was positively correlated with patient survival. RB1CC1 could inhibit the activity of PYK2, which in turn stimulated the stability of TAZ protein by phosphorylating TAZ. Meanwhile, TAZ protein activated PDL1 transcription by binding to the promoter region of PDL1. RB1CC1 overexpression or PYK2 knockdown could help everolimus (EVE) to inhibit tumor proliferation and activate immune response. Taken together, RB1CC1 can potentially augment the response of RCC cells to immunotherapy by suppressing the PYK2/TAZ/PDL1 signaling axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability and materials

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

ATCC:

American Type Culture Collection

BCA:

Bicinchoninic acid

BFGF:

Basic fibroblast growth factor

BSA:

Bovine serum albumin

CCK-8:

Cell counting kit-8

CDNA:

Complementary DNA

ChIP:

Chromatin immunoprecipitation

Co-IP:

Co-immunoprecipitation

DAB:

Diaminobenzidine

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco's modified Eagle’s medium

DOX:

Doxorubicin

ECL:

Enhanced chemiluminescence

EDTA:

Ethylenediamine tetraacetic acid

EGF:

Endothelial growth factor

EVE:

Everolimus

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

FIP200:

Family interacting protein of 200 kD

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GDNA:

Genomic DNA

GEO:

Gene Expression Omnibus

HER2:

Human epidermal growth factor receptor 2

IgG:

Immunoglobulin G

KIRC:

Kidney renal clear cell carcinoma

KIRP:

Kidney renal papillary cell carcinoma

NC:

Negative control

OD:

Optical density

PDL1:

Programmed cell death ligand 1

PSCA:

Prostate stem cell antigen

PVDF:

Polyvinylidene fluoride

PYK2:

Proline-rich/Ca-activated tyrosine kinase 2

RB1CC1:

Rb1-inducible coiled-coil 1

RCC:

Renal cell carcinoma

RIPA:

Radioimmunoprecipitation assay

RLU:

Relative luciferase

RPMI:

Roswell Park Memorial Institute

RT-qPCR:

Reverse transcription quantitative polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

SH-TAZ:

Short hairpin RNA targeting TAZ

SPF:

Specific pathogen-free

TAZ:

Transcriptional co-activator with PDZ-binding motif

TCGA:

The Cancer Genome Atlas

TPM:

Transcripts per million

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling

WPI:

Whey protein isolate

References

  1. Caliskan S (2019) Elevated neutrophil to lymphocyte and platelet to lymphocyte ratios predict high grade and advanced stage renal cell carcinoma. Int J Biol Markers 34:15–19. https://doi.org/10.1177/1724600818817557

    Article  CAS  PubMed  Google Scholar 

  2. De Gobbi A, Mangano MS, Cova G, Lamon C, Maccatrozzo L (2019) Testicular metastasis from renal cell carcinoma after nephrectomy and on tyrosine kinase inhibitors therapy: case report and review. Urologia 86:96–98. https://doi.org/10.1177/0391560318818951

    Article  PubMed  Google Scholar 

  3. Zheng S, Zhang M, Bai H, He M, Dong L, Cai L, Zhao M, Wang Q, Xu K, Li J (2019) Preparation of AS1411 aptamer modified Mn-MoS2 QDs for targeted MR imaging and fluorescence labelling of renal cell carcinoma. Int J Nanomedicine 14:9513–9524. https://doi.org/10.2147/IJN.S215883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Billon E, Walz J, Brunelle S, Thomassin J, Salem N, Guerin M, Vicier C, Dermeche S, Albiges L, Tantot F, Nenan S, Pignot G, Gravis G (2019) Vitiligo adverse event observed in a patient with durable complete response after nivolumab for metastatic renal cell carcinoma. Front Oncol 9:1033. https://doi.org/10.3389/fonc.2019.01033

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mendiratta P, Rini BI, Ornstein MC (2017) Emerging immunotherapy in advanced renal cell carcinoma. Urol Oncol 35:687–693. https://doi.org/10.1016/j.urolonc.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  6. Kawashima A, Uemura M, Nonomura N (2019) Importance of multiparametric evaluation of immune-related T-cell markers in renal-cell carcinoma. Clin Genitourin Cancer 17:e1147–e1152. https://doi.org/10.1016/j.clgc.2019.07.021

    Article  PubMed  Google Scholar 

  7. Chano T, Ikebuchi K, Ochi Y, Tameno H, Tomita Y, Jin Y, Inaji H, Ishitobi M, Teramoto K, Nishimura I, Minami K, Inoue H, Isono T, Saitoh M, Shimada T, Hisa Y, Okabe H (2010) RB1CC1 activates RB1 pathway and inhibits proliferation and cologenic survival in human cancer. PLoS ONE 5:e11404. https://doi.org/10.1371/journal.pone.0011404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ikebuchi K, Chano T, Ochi Y, Tameno H, Shimada T, Hisa Y, Okabe H (2009) RB1CC1 activates the promoter and expression of RB1 in human cancer. Int J Cancer 125:861–867. https://doi.org/10.1002/ijc.24466

    Article  CAS  PubMed  Google Scholar 

  9. Chano T, Ikebuchi K, Tomita Y, Jin Y, Inaji H, Ishitobi M, Teramoto K, Ochi Y, Tameno H, Nishimura I, Minami K, Inoue H, Isono T, Saitoh M, Shimada T, Hisa Y, Okabe H (2010) RB1CC1 together with RB1 and p53 predicts long-term survival in Japanese breast cancer patients. PLoS ONE 5:e15737. https://doi.org/10.1371/journal.pone.0015737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishimura I, Chano T, Kita H, Matsusue Y, Okabe H (2011) RB1CC1 protein suppresses type II collagen synthesis in chondrocytes and causes dwarfism. J Biol Chem 286:43925–43932. https://doi.org/10.1074/jbc.M111.264192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD, Marra MA, Gorski SM (2015) Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy 11:1668–1687. https://doi.org/10.1080/15548627.2015.1067362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tameno H, Chano T, Ikebuchi K, Ochi Y, Arai A, Kishimoto M, Shimada T, Hisa Y, Okabe H (2012) Prognostic significance of RB1-inducible coiled-coil 1 in salivary gland cancers. Head Neck 34:674–680. https://doi.org/10.1002/hed.21797

    Article  PubMed  Google Scholar 

  13. Wang D, Olman MA, Stewart J Jr, Tipps R, Huang P, Sanders PW, Toline E, Prayson RA, Lee J, Weil RJ, Palmer CA, Gillespie GY, Liu WM, Pieper RO, Guan JL, Gladson CL (2011) Downregulation of FIP200 induces apoptosis of glioblastoma cells and microvascular endothelial cells by enhancing Pyk2 activity. PLoS ONE 6:e19629. https://doi.org/10.1371/journal.pone.0019629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu S, Chen L, Xu Y (2018) Significance of PYK2 level as a prognosis predictor in patients with colon adenocarcinoma after surgical resection. Onco Targets Ther 11:7625–7634. https://doi.org/10.2147/OTT.S169531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shen T, Guo Q (2019) EGFR signaling pathway occupies an important position in cancer-related downstream signaling pathways of Pyk2. Cell Biol Int. https://doi.org/10.1002/cbin.11209

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao T, Bao Y, Lu X, He Y, Gan X, Wang J, Liu B, Wang L (2018) Pyk2 promotes tumor progression in renal cell carcinoma. Oncol Lett 16:5953–5959. https://doi.org/10.3892/ol.2018.9412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Selitrennik M, Lev S (2015) PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop. Oncotarget 6:22214–22226

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuang BH, Zhang MQ, Xu LH, Hu LJ, Wang HB, Zhao WF, Du Y, Zhang X (2013) Proline-rich tyrosine kinase 2 and its phosphorylated form pY881 are novel prognostic markers for non-small-cell lung cancer progression and patients’ overall survival. Br J Cancer 109:1252–1263. https://doi.org/10.1038/bjc.2013.439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yue Y, Li ZN, Fang QG, Zhang X, Yang LL, Sun CF, Liu FY (2015) The role of Pyk2 in the CCR7-mediated regulation of metastasis and viability in squamous cell carcinoma of the head and neck cells in vivo and in vitro. Oncol Rep 34:3280–3287. https://doi.org/10.3892/or.2015.4269

    Article  CAS  PubMed  Google Scholar 

  20. Kedan A, Verma N, Saroha A, Shreberk-Shaked M, Muller AK, Nair NU, Lev S (2018) PYK2 negatively regulates the Hippo pathway in TNBC by stabilizing TAZ protein. Cell Death Dis 9:985. https://doi.org/10.1038/s41419-018-1005-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schlame M, Xu Y, Ren M (2017) The Basis for Acyl Specificity in the Tafazzin Reaction. J Biol Chem 292:5499–5506. https://doi.org/10.1074/jbc.M116.769182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li X, Wu M, An D, Yuan H, Li Z, Song Y, Liu Z (2019) Suppression of Tafazzin promotes thyroid cancer apoptosis via activating the JNK signaling pathway and enhancing INF2-mediated mitochondrial fission. J Cell Physiol. https://doi.org/10.1002/jcp.28287

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang WH, Ding CC, Sun T, Rupprecht G, Lin CC, Hsu D, Chi JT (2019) The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep 28(2501–2508):e2504. https://doi.org/10.1016/j.celrep.2019.07.107

    Article  CAS  Google Scholar 

  24. Stewart GD, O’Mahony FC, Powles T, Riddick AC, Harrison DJ, Faratian D (2011) What can molecular pathology contribute to the management of renal cell carcinoma? Nat Rev Urol 8:255–265. https://doi.org/10.1038/nrurol.2011.43

    Article  CAS  PubMed  Google Scholar 

  25. Tong G, Cheng B, Li J, Wu X, Nong Q, He L, Li X, Li L, Wang S (2019) MACC1 regulates PDL1 expression and tumor immunity through the c-Met/AKT/mTOR pathway in gastric cancer cells. Cancer Med 8:7044–7054. https://doi.org/10.1002/cam4.2542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar B, Ghosh A, Datta C, Pal DK (2019) Role of PDL1 as a prognostic marker in renal cell carcinoma: a prospective observational study in eastern India. Ther Adv Urol 11:1756287219868859. https://doi.org/10.1177/1756287219868859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, Varambally S (2017) UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19:649–658. https://doi.org/10.1016/j.neo.2017.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nelson JD, Denisenko O, Sova P, Bomsztyk K (2006) Fast chromatin immunoprecipitation assay. Nucleic Acids Res 34:e2. https://doi.org/10.1093/nar/gnj004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoekstra MF, Dhillon N, Carmel G, DeMaggio AJ, Lindberg RA, Hunter T, Kuret J (1994) Budding and fission yeast casein kinase I isoforms have dual-specificity protein kinase activity. Mol Biol Cell 5:877–886. https://doi.org/10.1091/mbc.5.8.877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Zhu Y, Sheng Y, Xiao J, Xiao Y, Cheng N, Chai Y, Wu X, Zhang S, Xiang T (2019) SIRT1 downregulated FGB expression to inhibit RCC tumorigenesis by destabilizing STAT3. Exp Cell Res 382:111466. https://doi.org/10.1016/j.yexcr.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  31. Busch J, Ralla B, Jung M, Wotschofsky Z, Trujillo-Arribas E, Schwabe P, Kilic E, Fendler A, Jung K (2015) Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res 34:61. https://doi.org/10.1186/s13046-015-0180-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu S, Han L, Wang X, Liu Z, Ding S, Lu J, Bi D, Mei Y, Niu Z (2015) Nephroblastoma overexpressed gene (NOV) enhances RCC cell motility through upregulation of ICAM-1 and COX-2 expression via Akt pathway. Int J Clin Exp Pathol 8:1302–1311

    PubMed  PubMed Central  Google Scholar 

  33. Liu X, Zhang M, Liu X, Sun H, Guo Z, Tang X, Wang Z, Li J, Li H, Sun W, Zhang Y (2019) Urine metabolomics for Renal Cell Carcinoma (RCC) prediction: tryptophan metabolism as an important pathway in RCC. Front Oncol 9:663. https://doi.org/10.3389/fonc.2019.00663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma HL, Yu SJ, Chen J, Ding XF, Chen G, Liang Y, Pan JL (2020) CA8 promotes RCC proliferation and migration though its expression level is lower in tumor compared to adjacent normal tissue. Biomed Pharmacother 121:109578. https://doi.org/10.1016/j.biopha.2019.109578

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Wan X, Chen H, Yang S, Liu Y, Mo W, Meng D, Du W, Huang Y, Wu H, Wang J, Li T, Li Y (2014) Identification of miR-133b and RB1CC1 as independent predictors for biochemical recurrence and potential therapeutic targets for prostate cancer. Clin Cancer Res 20:2312–2325. https://doi.org/10.1158/1078-0432.CCR-13-1588

    Article  CAS  PubMed  Google Scholar 

  36. Matboli M, Azazy AEM, Adel S, Bekhet MM, Eissa S (2017) Evaluation of urinary autophagy transcripts expression in diabetic kidney disease. J Diabetes Complications 31:1491–1498. https://doi.org/10.1016/j.jdiacomp.2017.06.009

    Article  PubMed  Google Scholar 

  37. Zhang LY, Wu JL, Qiu HB, Dong SS, Zhu YH, Lee VH, Qin YR, Li Y, Chen J, Liu HB, Bi J, Ma S, Guan XY, Fu L (2016) PSCA acts as a tumor suppressor by facilitating the nuclear translocation of RB1CC1 in esophageal squamous cell carcinoma. Carcinogenesis 37:320–332. https://doi.org/10.1093/carcin/bgw010

    Article  CAS  PubMed  Google Scholar 

  38. Bagi CM, Christensen J, Cohen DP, Roberts WG, Wilkie D, Swanson T, Tuthill T, Andresen CJ (2009) Sunitinib and PF-562,271 (FAK/Pyk2 inhibitor) effectively block growth and recovery of human hepatocellular carcinoma in a rat xenograft model. Cancer Biol Ther 8:856–865. https://doi.org/10.4161/cbt.8.9.8246

    Article  CAS  PubMed  Google Scholar 

  39. Ueda H, Abbi S, Zheng C, Guan JL (2000) Suppression of Pyk2 kinase and cellular activities by FIP200. J Cell Biol 149:423–430. https://doi.org/10.1083/jcb.149.2.423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Al-Juboori SI, Vadakekolathu J, Idri S, Wagner S, Zafeiris D, Pearson JR, Almshayakhchi R, Caraglia M, Desiderio V, Miles AK, Boocock DJ, Ball GR, Regad T (2019) PYK2 promotes HER2-positive breast cancer invasion. J Exp Clin Cancer Res 38:210. https://doi.org/10.1186/s13046-019-1221-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rolon-Reyes K, Kucheryavykh YV, Cubano LA, Inyushin M, Skatchkov SN, Eaton MJ, Harrison JK, Kucheryavykh LY (2015) Microglia activate migration of glioma cells through a Pyk2 intracellular pathway. PLoS ONE 10:e0131059. https://doi.org/10.1371/journal.pone.0131059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao J, Chen Y, Fu J, Qian YW, Ren YB, Su B, Luo T, Dai RY, Huang L, Yan JJ, Wu MC, Yan YQ, Wang HY (2013) High expression of proline-rich tyrosine kinase 2 is associated with poor survival of hepatocellular carcinoma via regulating phosphatidylinositol 3-kinase/AKT pathway. Ann Surg Oncol 20(Suppl 3):S312-323. https://doi.org/10.1245/s10434-012-2372-9

    Article  PubMed  Google Scholar 

  43. Jang EJ, Jeong H, Han KH, Kwon HM, Hong JH, Hwang ES (2012) TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol Cell Biol 32:4925–4932. https://doi.org/10.1128/MCB.00392-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janse van Rensburg HJ, Azad T, Ling M, Hao Y, Snetsinger B, Khanal P, Minassian LM, Graham CH, Rauh MJ, Yang X (2018) The hippo pathway component TAZ promotes immune evasion in human cancer through PD-L1. Cancer Res 78:1457–1470. https://doi.org/10.1158/0008-5472.CAN-17-3139

    Article  CAS  PubMed  Google Scholar 

  45. Chandrasekaran D, Sundaram S, N K, R P, (2019) Programmed death ligand 1; an immunotarget for renal cell carcinoma. Asian Pac J Cancer Prev 20:2951–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen S, Crabill GA, Pritchard TS, McMiller TL, Wei P, Pardoll DM, Pan F, Topalian SL (2019) Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer 7:305. https://doi.org/10.1186/s40425-019-0770-2

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Maeseneer DJ, Delafontaine B, Rottey S (2017) Checkpoint inhibition: new treatment options in urologic cancer. Acta Clin Belg 72:24–28. https://doi.org/10.1080/17843286.2016.1260890

    Article  PubMed  Google Scholar 

  48. Hirayama Y, Gi M, Yamano S, Tachibana H, Okuno T, Tamada S, Nakatani T, Wanibuchi H (2016) Anti-PD-L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma. Cancer Sci 107:1736–1744. https://doi.org/10.1111/cas.13099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere appreciation to the reviewers for their helpful comments on this study.

Author information

Authors and Affiliations

Authors

Contributions

PFC, YJD, XSL, LBC, RH, WZ, SML, and HW designed the study. PFC, YJD, and XSL collated the data, carried out data analyses, and produced the initial draft of the manuscript. LBC, RH, WZ, SML, and HW contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding authors

Correspondence to Rong Hu or Shimin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The study protocol was approved by the Medical and Clinical Research Ethics Committee of the First Affiliated Hospital, University of South China, and performed in strict accordance with the Declaration of Helsinki.

Human and animal participation

Animal experimental procedures were in line with the animal care guideline of National Institutes of Health. Great efforts were made to minimize the number of animals used in the experiments and their discomfort.

Informed consent

All participants signed informed consent documentation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Duan, Y., Lu, X. et al. RB1CC1 functions as a tumor-suppressing gene in renal cell carcinoma via suppression of PYK2 activity and disruption of TAZ-mediated PDL1 transcription activation. Cancer Immunol Immunother 70, 3261–3275 (2021). https://doi.org/10.1007/s00262-021-02913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02913-8

Keywords

Navigation