Skip to main content

Advertisement

Log in

Loss of type I IFN responsiveness impairs natural killer cell antitumor activity in breast cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Competent type I IFN signaling is the lynchpin of most immune surveillance mechanisms and has recently proven critical to the efficacy of several anticancer agents. Expression of the type I IFN receptor, IFNAR, underpins type I IFN responsiveness in all cells and facilitates the activation and cytotoxic potential of lymphocytes, while loss of IFNAR on lymphocytes has previously been associated with tumor progression and poor patient survival. This study underscores the importance of intact type I IFN signaling to NK cells in the regulation of tumorigenesis and metastasis, whereby ablation of NK cell IFNAR1 impairs antitumor activity and tumor clearance. Using a preclinical model of triple negative breast cancer, we identified that intact IFNAR on NK cells is required for an effective response to type I IFN-inducing immunotherapeutics that may be mediated by pathways associated with NK cell degranulation. Taken together, these data provide a rationale for considering the IFNAR status on NK cells when devising therapeutic strategies aimed at inducing systemic type I IFN signaling in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper (and its supplementary information files).

References

  1. Galon J, Angell H, Bedognetti D, Marincola F (2013) The Continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39:11–26. https://doi.org/10.1016/j.immuni.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32:1267–1284. https://doi.org/10.1101/gad.314617.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306. https://doi.org/10.1038/nrc3245

    Article  CAS  PubMed  Google Scholar 

  4. Boon T, Cerottini J-C, Van den Eynde B et al (1994) Tumor antigens recognized by T Lymphocytes. Annu Rev Immunol 12:337–365. https://doi.org/10.1146/annurev.iy.12.040194.002005

    Article  CAS  PubMed  Google Scholar 

  5. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 80(348):69–74. https://doi.org/10.1126/science.aaa4971

    Article  CAS  Google Scholar 

  6. Kvistborg P, Philips D, Kelderman S et al (2014) Anti–CTLA-4 therapy broadens the melanoma-reactive CD8T cell response. Sci Transl Med 6:254–128. https://doi.org/10.1126/scitranslmed.3008918

    Article  CAS  Google Scholar 

  7. Tumeh PC, Harview CL, Yearley JH et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568–571. https://doi.org/10.1038/nature13954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao J, Ward JF, Pettaway CA et al (2017) VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. https://doi.org/10.1038/nm.4308

    Article  PubMed  PubMed Central  Google Scholar 

  9. Michie J, Beavis PA, Freeman AJ et al (2019) Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunol Res 7:183–192. https://doi.org/10.1158/2326-6066.CIR-18-0428

    Article  CAS  PubMed  Google Scholar 

  10. Martinez M, Moon EK (2019) CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 10:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Smyth MJ, Thia KYT, Street SEA et al (2000) Differential tumor surveillance by natural killer (Nk) and Nkt Cells. J Exp Med 191:661–668. https://doi.org/10.1084/jem.191.4.661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sathe P, Delconte RB, Souza-Fonseca-Guimaraes F et al (2014) Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells. Nat Commun 5:1–10. https://doi.org/10.1038/ncomms5539

    Article  CAS  Google Scholar 

  13. Smyth MJ, Cretney E, Kelly JM et al (2005) Activation of NK cell cytotoxicity. Mol Immunol 42:501–510. https://doi.org/10.1016/j.molimm.2004.07.034

    Article  CAS  PubMed  Google Scholar 

  14. Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M et al (2019) A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res 7:1162–1174. https://doi.org/10.1158/2326-6066.CIR-18-0500

    Article  CAS  PubMed  Google Scholar 

  15. Pasero C, Gravis G, Granjeaud S et al (2015) Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget 6:14360–14373. https://doi.org/10.18632/oncotarget.3965

    Article  PubMed  PubMed Central  Google Scholar 

  16. Green TL, Cruse JM, Lewis RE (2013) Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment. Exp Mol Pathol 95:174–179. https://doi.org/10.1016/j.yexmp.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  17. Crouse J, Xu HC, Lang PA, Oxenius A (2015) NK cells regulating T cell responses: mechanisms and outcome. Trends Immunol 36:49–58. https://doi.org/10.1016/j.it.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  18. Kärre K (2002) NK cells, MHC class I molecules and the missing self. Scand J Immunol 55:221–228. https://doi.org/10.1046/j.1365-3083.2002.01053.x

    Article  PubMed  Google Scholar 

  19. Huntington ND, Nutt SL, Carotta S (2013) Regulation of murine natural killer cell commitment. Front Immunol 4:14. https://doi.org/10.3389/fimmu.2013.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171. https://doi.org/10.1038/35093109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao J, Zheng Q, Xin N et al (2017) CD155, an onco-immunologic molecule in human tumors. Cancer Sci 108:1934–1938. https://doi.org/10.1111/cas.13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parker BS, Rautela J, Hertzog PJ (2016) Antitumour actions of interferons: Implications for cancer therapy. Nat Rev Cancer 16:131–144. https://doi.org/10.1038/nrc.2016.14

    Article  CAS  PubMed  Google Scholar 

  23. Owen KL, Gearing LJ, Zanker DJ et al (2020) Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep. https://doi.org/10.15252/embr.202050162

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fuertes MB, Kacha AK, Kline J et al (2011) Host type I IFN signals are required for antitumor CD8 + T cell responses through CD8α + dendritic cells. J Exp Med 208:2005–2016. https://doi.org/10.1084/jem.20101159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stone ML, Chiappinelli KB, Li H et al (2017) Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc Natl Acad Sci 114:E10981–E10990. https://doi.org/10.1073/pnas.1712514114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sistigu A, Yamazaki T, Vacchelli E et al (2014) Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20:1301

    Article  CAS  PubMed  Google Scholar 

  27. Budhwani M, Mazzieri R, Dolcetti R (2018) Plasticity of type I interferon-mediated responses in cancer therapy: from anti-tumor immunity to resistance. Front Oncol 8:322. https://doi.org/10.3389/fonc.2018.00322

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brockwell NK, Owen KL, Zanker D et al (2017) Neoadjuvant Interferons: Critical for effective PD-1 based immunotherapy in TNBC. Cancer Immunol Res 5(10):871–884

    Article  CAS  PubMed  Google Scholar 

  29. Minn AJ, Wherry EJ (2016) Combination cancer therapies with immune checkpoint blockade: convergence on interferon signaling. Cell 165:272–275. https://doi.org/10.1016/j.cell.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  30. Honda K, Yanai H, Negishi H et al (2005) IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777. https://doi.org/10.1038/nature03464

    Article  CAS  PubMed  Google Scholar 

  31. Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers (Basel) 11:2002. https://doi.org/10.3390/cancers11122002

    Article  CAS  Google Scholar 

  32. Nguyen KB, Cousens LP, Doughty LA et al (2000) Interferon alpha/beta-mediated inhibition and promotion of interferon gamma: STAT1 resolves a paradox. Nat Immunol 1:70–76. https://doi.org/10.1038/76940

    Article  CAS  PubMed  Google Scholar 

  33. Ning S, Huye LE, Pagano JS (2005) Regulation of the transcriptional activity of the IRF7 promoter by a pathway independent of interferon signaling. J Biol Chem 280:12262–12270. https://doi.org/10.1074/jbc.M404260200

    Article  CAS  PubMed  Google Scholar 

  34. Edwards BS, Merritt JA, Fuhlbrigge RC, Borden EC (1985) Low doses of interferon alpha result in more effective clinical natural killer cell activation. J Clin Invest 75:1908–1913. https://doi.org/10.1172/Jci111905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swann JB, Hayakawa Y, Zerafa N et al (2007) Type I IFN contributes to NK cell homeostasis, activation, and antitumor function. J Immunol 178:7540–7549. https://doi.org/10.4049/jimmunol.178.12.7540

    Article  CAS  PubMed  Google Scholar 

  36. Bidwell BN, Slaney CY, Withana NP et al (2012) Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med 18:1224–1231. https://doi.org/10.1038/nm.2830

    Article  CAS  PubMed  Google Scholar 

  37. Critchley-Thorne RJ, Simons DL, Yan N et al (2009) Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci 106:9010–9015. https://doi.org/10.1073/pnas.0901329106

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jacquelot N, Yamazaki T, Roberti MP et al (2019) Sustained Type I interferon signaling as a mechanism of resistance to PD-1 blockade. Cell Res 29:846–861. https://doi.org/10.1038/s41422-019-0224-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fuchs SY (2013) Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interf Cytokine Res 33:211–225. https://doi.org/10.1089/jir.2012.0117

    Article  CAS  Google Scholar 

  40. Katlinski KV, Gui J, Katlinskaya YV et al (2017) Inactivation of interferon receptor promotes the establishment of immune privileged tumor microenvironment. Cancer Cell 31:194–207. https://doi.org/10.1016/j.ccell.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Diamond MS, Kinder M, Matsushita H et al (2011) Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 208:1989–2003. https://doi.org/10.1084/jem.20101158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brockwell NK, Rautela J, Owen KL et al (2019) Tumor inherent interferon regulators as biomarkers of long-term chemotherapeutic response in TNBC. NPJ Precis Oncol 3:21. https://doi.org/10.1038/s41698-019-0093-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Savas P, Virassamy B, Ye C et al (2018) Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24:986–993. https://doi.org/10.1038/s41591-018-0078-7

    Article  CAS  PubMed  Google Scholar 

  44. Johnstone CN, Smith YE, Cao Y et al (2015) Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 8:237–251. https://doi.org/10.1242/dmm.017830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rautela J, Baschuk N, Slaney CY et al (2015) Loss of host Type-I IFN signaling accelerates metastasis and impairs NK-cell antitumor function in multiple models of breast cancer. Cancer Immunol Res 3:1207–1217. https://doi.org/10.1158/2326-6066.CIR-15-0065

    Article  CAS  PubMed  Google Scholar 

  46. Rusinova I, Forster S, Yu S et al (2013) Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 41:D1040–D1046. https://doi.org/10.1093/nar/gks1215

    Article  CAS  PubMed  Google Scholar 

  47. Zanker D, Xiao K, Oveissi S et al (2013) An optimized method for establishing high purity murine CD8+ T cell cultures. J Immunol Methods 387:173–180. https://doi.org/10.1016/j.jim.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  48. Lu C, Klement JD, Ibrahim ML et al (2019) Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes. J Immunother cancer 7:157. https://doi.org/10.1186/s40425-019-0635-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nocera DA, Roselli E, Araya P et al (2016) In vivo visualizing the IFN-β response required for tumor growth control in a therapeutic model of polyadenylic-polyuridylic acid administration. J Immunol 196:2860–2869. https://doi.org/10.4049/jimmunol.1501044

    Article  CAS  PubMed  Google Scholar 

  50. Guan J, Miah SMS, Wilson ZS et al (2014) Role of type I interferon receptor signaling on NK cell development and functions. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0111302

    Article  CAS  Google Scholar 

  51. Oh JH, Kim MJ, Choi SJ et al (2019) Sustained type I interferon reinforces NK cell–mediated cancer immunosurveillance during chronic virus infection. Cancer Immunol Res 7:584–599. https://doi.org/10.1158/2326-6066.CIR-18-0403

    Article  CAS  PubMed  Google Scholar 

  52. Mizutani T, Neugebauer N, Putz EM et al (2012) Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance. Oncoimmunology 1:1027–1037. https://doi.org/10.4161/onci.21284

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alter G, Malenfant JM, Altfeld M (2004) CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 294:15–22. https://doi.org/10.1016/j.jim.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  54. Kwaa AKR, Talana CAG, Blankson JN (2019) Interferon alpha enhances NK Cell function and the suppressive capacity of HIV-specific CD8<sup>+</sup> T Cells. J Virol 93:e01541-e1618. https://doi.org/10.1128/JVI.01541-18

    Article  PubMed  PubMed Central  Google Scholar 

  55. Katlinskaya YV, Katlinski KV, Yu Q et al (2016) Suppression of Type I interferon signaling overcomes oncogene-induced senescence and mediates melanoma development and progression. Cell Rep 15:171–180. https://doi.org/10.1016/j.celrep.2016.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Böttcher JP, Bonavita E, Chakravarty P et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172:1022-1037.e14. https://doi.org/10.1016/j.cell.2018.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Putz EM, Guillerey C, Kos K et al (2017) Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncoimmunology 6:e1267892. https://doi.org/10.1080/2162402X.2016.1267892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pesce S, Tabellini G, Cantoni C et al (2015) B7–H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4:e1001224–e1001224. https://doi.org/10.1080/2162402X.2014.1001224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738. https://doi.org/10.1038/nature01112

    Article  CAS  PubMed  Google Scholar 

  60. Whiteside TL (2013) Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans 41:245–251. https://doi.org/10.1042/BST20120265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Klover PJ, Muller WJ, Robinson GW et al (2010) Loss of STAT1 from mouse mammary epithelium results in an increased neu-induced tumor burden. Neoplasia 12:899–905. https://doi.org/10.1593/neo.10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sisirak V, Faget J, Gobert M et al (2012) Impaired IFN-α production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression. Cancer Res 72:5188–5197

    Article  CAS  PubMed  Google Scholar 

  63. Ivanova DL, Krempels R, Denton SL, et al (2019) NK cells negatively regulate CD8 T cells to promote immune exhaustion and chronic Toxoplasma gondii infection. bioRxiv 864272. https://doi.org/https://doi.org/10.1101/864272

  64. Cook KD, Whitmire JK (2013) The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol 190:641–649. https://doi.org/10.4049/jimmunol.1202448

    Article  CAS  PubMed  Google Scholar 

  65. Iraolagoitia XLR, Spallanzani RG, Torres NI et al (2016) NK Cells Restrain spontaneous antitumor CD8+ T cell priming through PD-1/PD-L1 interactions with dendritic cells. J Immunol 197:953–961. https://doi.org/10.4049/jimmunol.1502291

    Article  CAS  PubMed  Google Scholar 

  66. López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L (2017) Control of Metastasis by NK Cells. Cancer Cell 32:135–154. https://doi.org/10.1016/j.ccell.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  67. Delahaye NF, Rusakiewicz S, Martins I et al (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat Med 17:700–707. https://doi.org/10.1038/nm.2366

    Article  CAS  PubMed  Google Scholar 

  68. Hoover RG, Gullickson G, Kornbluth J (2012) Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and metastasis. Front Immunol 3:1–9. https://doi.org/10.3389/fimmu.2012.00393

    Article  Google Scholar 

  69. Hoover RG, Gullickson G, Kornbluth J (2009) Impaired NK Cytolytic activity and enhanced tumor growth in NK lytic-associated molecule-deficient mice. J Immunol 183:6913–6921. https://doi.org/10.4049/jimmunol.0901679

    Article  CAS  PubMed  Google Scholar 

  70. Hodi FS, Day SJO, Mcdermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723. https://doi.org/10.1056/NEJMoa1003466.Improved

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bald T, Landsberg J, Lopez-Ramos D et al (2014) Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 4:674–687. https://doi.org/10.1158/2159-8290.CD-13-0458

    Article  CAS  PubMed  Google Scholar 

  72. Musella M, Manic G, De Maria R et al (2017) Type-I-interferons in infection and cancer: Unanticipated dynamics with therapeutic implications. Oncoimmunology 6:1–12. https://doi.org/10.1080/2162402X.2017.1314424

    Article  Google Scholar 

  73. Xu HC, Grusdat M, Pandyra AA et al (2014) Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 40:949–960. https://doi.org/10.1016/j.immuni.2014.05.004

    Article  CAS  PubMed  Google Scholar 

  74. Curran E, Chen X, Corrales L et al (2016) STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep 15:2357–2366. https://doi.org/10.1016/j.celrep.2016.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nicolai CJ, Wolf N, Chang I-C et al (2020) NK cells mediate clearance of CD8+ T cell–resistant tumors in response to STING agonists. Sci Immunol 5:eaaz2738. https://doi.org/10.1126/sciimmunol.aaz2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2:735–747. https://doi.org/10.1038/nri911

    Article  CAS  PubMed  Google Scholar 

  77. Kajitani K, Tanaka Y, Arihiro K et al (2012) Mechanistic analysis of the antitumor efficacy of human natural killer cells against breast cancer cells. Breast Cancer Res Treat 134:139–155. https://doi.org/10.1007/s10549-011-1944-x

    Article  PubMed  Google Scholar 

  78. Jun E, Song AY, Choi J-W et al (2019) Progressive impairment of nk cell cytotoxic degranulation is associated with TGF-β1 deregulation and disease progression in pancreatic cancer. Front Immunol 10:1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the LARTF and Peter MacCallum Cancer Centre animal facility staff for assistance monitoring experimental animals. We thank Dr. Paul Beavis for the gifting of the B16F10 cell line. We thank Prof Christian Engwerda and Dr Fiona Amante at the QIMR Berghofer for the gifting of C57BL/6 Ifnarfl/fl and NKp46iCre mice. We acknowledge fellowship support from the Victorian Cancer Agency (BSP) and grant funding from the Cancer Council Victoria (BSP) for this work.

Author information

Authors and Affiliations

Authors

Contributions

BSP and NB conceived the study. BSP, KLO and DZ designed the experiments. DZ, NB, KLO and AS performed the experiments. KLO and DZ analyzed and interpreted the data. BSP supervised the overall research. KLO and BSP wrote the paper. KLO, DZ, NB and BSP reviewed and/or edited the paper.

Corresponding author

Correspondence to Belinda S. Parker.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the Supplementary Information.

Supplementary file 1 (PPTX 2063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanker, D.J., Owen, K.L., Baschuk, N. et al. Loss of type I IFN responsiveness impairs natural killer cell antitumor activity in breast cancer. Cancer Immunol Immunother 70, 2125–2138 (2021). https://doi.org/10.1007/s00262-021-02857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-021-02857-z

Keywords

Navigation