Skip to main content

Advertisement

Log in

Current trends in cancer immunotherapy: a literature-mining analysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer immunotherapy is a rapidly growing field that is completely transforming oncology care. Mining this knowledge base for biomedically important information is becoming increasingly challenging, due to the expanding number of scientific publications, and the dynamic evolution of this subject with time. In this study, we have employed a literature-mining approach that was used to analyze the cancer immunotherapy-related publications listed in PubMed and quantify emerging trends. A total of 93,033 publications published in 5055 journals have been retrieved, and 141 meaningful topics have been identified, which were further classified into eight distinct categories. Statistical analysis indicates a mean annual increase in the number of published papers of approximately 8% in the last 20 years. The research topics that exhibited the highest trends included “immune checkpoint inhibitors,” “tumor microenvironment,” “HPV vaccination,” “CAR T-cells,” and “gene mutations/tumor profiling.” The top identified cancer types included “lung,” “colorectal,” and “breast cancer,” and a shift in popularity from hematological to solid tumors was observed. As regards clinical research, a transition from early phase clinical trials to randomized control trials was recorded, indicating that the field is entering a more advanced phase of development. Overall, this mining approach provided an unbiased analysis of the cancer immunotherapy literature in a time-conserving and scale-efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oiseth SJ, Aziz MS (2017) Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 3(10):250. https://doi.org/10.20517/2394-4722.2017.41

    Article  CAS  Google Scholar 

  2. Marabelle A, Tselikas L, Baere Td, Houot R (2017) Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol 28(Suppl. 12):xii33–xii43. https://doi.org/10.1093/annonc/mdx683

    Article  PubMed  CAS  Google Scholar 

  3. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480(7378):480–489. https://doi.org/10.1038/nature10673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang Y, Quan L, Du L (2019) The 100 top-cited studies in cancer immunotherapy. Artif Cells Nanomed Biotechnol 47(1):2282–2292. https://doi.org/10.1080/21691401.2019.1623234

    Article  PubMed  CAS  Google Scholar 

  5. Dobosz P, Dzieciatkowski T (2019) The intriguing history of cancer immunotherapy. Front Immunol 10:2965. https://doi.org/10.3389/fimmu.2019.02965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Whiteside TL, Odoux C (2004) Dendritic cell biology and cancer therapy. Cancer Immunol Immunother 53(3):240–248. https://doi.org/10.1007/s00262-003-0468-6

    Article  PubMed  Google Scholar 

  7. Fuge O, Vasdev N, Allchorne P, Green JS (2015) Immunotherapy for bladder cancer. Res Rep Urol 7:65–79. https://doi.org/10.2147/RRU.S63447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jiang T, Zhou C, Ren S (2016) Role of IL-2 in cancer immunotherapy. OncoImmunology 5(6):e1163462. https://doi.org/10.1080/2162402X.2016.1163462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kirkwood J (2002) Cancer immunotherapy: the interferon-α experience. Semin Oncol 29(3, Suppl. 7):18–26. https://doi.org/10.1053/sonc.2002.33078

    Article  PubMed  CAS  Google Scholar 

  10. Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230(3):241–248. https://doi.org/10.1002/path.4188

    Article  PubMed  CAS  Google Scholar 

  11. Rakoff-Nahoum S, Medzhitov R (2009) Toll-like receptors and cancer. Nat Rev Cancer 9(1):57–63. https://doi.org/10.1038/nrc2541

    Article  PubMed  CAS  Google Scholar 

  12. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148. https://doi.org/10.1016/j.immuni.2004.07.017

    Article  PubMed  CAS  Google Scholar 

  13. Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9(10):1773–1781. https://doi.org/10.7150/jca.24577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, Fox BA, Galon J, June CH, Kalos M, Kirsch I, Kleen T, Kroemer G, Lanier L, Levy R, Lyerly HK, Maecker H, Marabelle A, Melenhorst J, Miller J, Melero I, Odunsi K, Palucka K, Peoples G, Ribas A, Robins H, Robinson W, Serafini T, Sondel P, Vivier E, Weber J, Wolchok J, Zitvogel L, Disis ML, Cheever MA, on behalf of the Cancer Immunotherapy Trials Network (CITN) (2016) Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J Immunother Cancer 4(1):15. https://doi.org/10.1186/s40425-016-0118-0

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marshall HT, Djamgoz MBA (2018) Immuno-oncology: emerging targets and combination therapies. Front Oncol 8:315. https://doi.org/10.3389/fonc.2018.00315

    Article  PubMed  PubMed Central  Google Scholar 

  16. Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14(1):73. https://doi.org/10.1186/s12916-016-0623-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Subramanian N, Torabi-Parizi P, Gottschalk RA, Germain RN, Dutta B (2015) Network representations of immune system complexity: immune networks. Wiley Interdiscip Rev Syst Biol Med 7(1):13–38. https://doi.org/10.1002/wsbm.1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. O’Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S (2015) Using text mining for study identification in systematic reviews: a systematic review of current approaches. Syst Rev 4(1):5. https://doi.org/10.1186/2046-4053-4-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mo Y, Kontonatsios G, Ananiadou S (2015) Supporting systematic reviews using LDA-based document representations. Syst Rev 4(1):172. https://doi.org/10.1186/s13643-015-0117-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zou C (2018) Analyzing research trends on drug safety using topic modeling. Expert Opin Drug Saf 17(6):629–636. https://doi.org/10.1080/14740338.2018.1458838

    Article  PubMed  CAS  Google Scholar 

  21. Bisgin H, Liu Z, Fang H, Xu X, Tong W (2011) Mining FDA drug labels using an unsupervised learning technique—topic modeling. BMC Bioinform 12(Suppl. 10):S11. https://doi.org/10.1186/1471-2105-12-S10-S11

    Article  Google Scholar 

  22. Andronis C, Sharma A, Virvilis V, Deftereos S, Persidis A (2011) Literature mining, ontologies and information visualization for drug repurposing. Brief Bioinform 12(4):357–368. https://doi.org/10.1093/bib/bbr005

    Article  PubMed  CAS  Google Scholar 

  23. Wang SH, Ding Y, Zhao W, Huang YH, Perkins R, Zou W, Chen JJ (2016) Text mining for identifying topics in the literatures about adolescent substance use and depression. BMC Public Health 16(1):279. https://doi.org/10.1186/s12889-016-2932-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou X, Peng Y, Liu B (2010) Text mining for traditional Chinese medical knowledge discovery: a survey. J Biomed Inform 43(4):650–660. https://doi.org/10.1016/j.jbi.2010.01.002

    Article  PubMed  Google Scholar 

  25. Faro A, Giordano D, Spampinato C (2012) Combining literature text mining with microarray data: advances for system biology modeling. Brief Bioinform 13(1):61–82. https://doi.org/10.1093/bib/bbr018

    Article  PubMed  Google Scholar 

  26. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022

    Google Scholar 

  27. Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84. https://doi.org/10.1145/2133806.2133826

    Article  Google Scholar 

  28. Drosatos G, Kaldoudi E (2019) A probabilistic semantic analysis of ehealth scientific literature. J Telemed Telecare 00:1–19. https://doi.org/10.1177/1357633X19846252

    Article  Google Scholar 

  29. PubMed, US National Library of Medicine (2019) PubMed—biomedical literature from MEDLINE. https://www.ncbi.nlm.nih.gov/pubmed/. Accessed 29 Dec 2019

  30. McCallum AK (2002) Mallet: a machine learning for language toolkit. http://mallet.cs.umass.edu. Accessed 20 Feb 2019

  31. Text Categorization Project (2011) Lists of stopwords. http://code.google.com/p/text-categorization/. Accessed 20 Feb 2019

  32. Krovetz R (1993) Viewing morphology as an inference process. In: 16th Annual international ACM SIGIR conference on research and development in information retrieval. ACM, New York, NY, SIGIR ’93, pp 191–202. https://doi.org/10.1145/160688.160718

  33. Agrawal A, Fu W, Menzies T (2018) What is wrong with topic modeling? And how to fix it using search-based software engineering. Inf Softw Technol 98:74–88. https://doi.org/10.1016/j.infsof.2018.02.005

    Article  Google Scholar 

  34. Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11(2):37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  35. Kavvadias S, Drosatos G, Kaldoudi E (2018) An online service for topics and trends analysis in medical literature. In: Lhotska L, Sukupova L, Lacković I, Ibbott GS (eds) World congress on medical physics and biomedical engineering, 3–8 June 2018, Prague, Czech Republic, IFMBE proceedings, vol 68/3. Springer Singapore

  36. Reichman JH, Okediji RL (2012) When copyright law and science collide: empowering digitally integrated research methods on a global scale. Minn Law Rev 96(4):1362–1480

    PubMed  PubMed Central  Google Scholar 

  37. Ahmed I, Sutton AJ, Riley RD (2012) Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: a database survey. BMJ 344(1 jan03):d7762–d7762. https://doi.org/10.1136/bmj.d7762

    Article  PubMed  Google Scholar 

  38. Zweigenbaum P, Demner-Fushman D, Yu H, Cohen KB (2007) Frontiers of biomedical text mining: current progress. Brief Bioinform 8(5):358–375. https://doi.org/10.1093/bib/bbm045

    Article  PubMed  CAS  Google Scholar 

  39. Raju S, Joseph R, Sehgal S (2018) Review of checkpoint immunotherapy for the management of non-small cell lung cancer. ImmunoTargets Ther 7:63–75. https://doi.org/10.2147/ITT.S125070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kather JN, Berghoff AS, Ferber D, Suarez-Carmona M, Reyes-Aldasoro CC, Valous NA, Rojas-Moraleda R, Jäger D, Halama N (2018) Large-scale database mining reveals hidden trends and future directions for cancer immunotherapy. OncoImmunology 7(7):e1444412. https://doi.org/10.1080/2162402X.2018.1444412

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dumbrava EI, Meric-Bernstam F (2018) Personalized cancer therapy—leveraging a knowledge base for clinical decision-making. Mol Case Stud 4(2):a001578. https://doi.org/10.1101/mcs.a001578

    Article  CAS  Google Scholar 

  42. Tang J, Pearce L, O’Donnell-Tormey J, Hubbard-Lucey VM (2018) Trends in the global immuno-oncology landscape. Nat Rev Drug Discov 17(11):783–784. https://doi.org/10.1038/nrd.2018.167

    Article  PubMed  CAS  Google Scholar 

  43. Klevorn LE, Teague RM (2016) Adapting cancer immunotherapy models for the real world. Trends Immunol 37(6):354–363. https://doi.org/10.1016/j.it.2016.03.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH (2017) Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev 6(1):245. https://doi.org/10.1186/s13643-017-0644-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research is partially co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning” in the context of the project “Reinforcement of Postdoctoral Researchers - 2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (IKY).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stamatia Pouliliou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 483 KB)

Appendices

Appendix

List of identified topics

Table 1 List of topics organized in 8 categories (and 5 subcategories), showing the regression analysis results, the overall popularity metric and the respective rank of the topics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pouliliou, S., Nikolaidis, C. & Drosatos, G. Current trends in cancer immunotherapy: a literature-mining analysis. Cancer Immunol Immunother 69, 2425–2439 (2020). https://doi.org/10.1007/s00262-020-02630-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02630-8

Keywords

Navigation