Skip to main content
Log in

18F-fluorodeoxyglucose positron emission tomography correlates with tumor immunometabolic phenotypes in resected lung cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Enhanced tumor glycolytic activity is a mechanism by which tumors induce an immunosuppressive environment to resist adoptive T cell therapy; therefore, methods of assessing intratumoral glycolytic activity are of considerable clinical interest. In this study, we characterized the relationships among tumor 18F-fluorodeoxyglucose (FDG) retention, tumor metabolic and immune phenotypes, and survival in patients with resected non-small cell lung cancer (NSCLC). We retrospectively analyzed tumor preoperative positron emission tomography (PET) 18F-FDG uptake in 59 resected NSCLCs and investigated correlations between PET parameters (SUVMax, SUVTotal, SUVMean, TLG), tumor expression of glycolysis- and immune-related genes, and tumor-associated immune cell densities that were quantified by immunohistochemistry. Tumor glycolysis-associated immune gene signatures were analyzed for associations with survival outcomes. We found that each 18F-FDG PET parameter was positively correlated with tumor expression of glycolysis-related genes. Elevated 18F-FDG SUVMax was more discriminatory of glycolysis-associated changes in tumor immune phenotypes than other 18F-FDG PET parameters. Increased SUVMax was associated with multiple immune factors characteristic of an immunosuppressive and poorly immune infiltrated tumor microenvironment, including elevated PD-L1 expression, reduced CD57+ cell density, and increased T cell exhaustion gene signature. Elevated SUVMax identified immune-related transcriptomic signatures that were associated with enhanced tumor glycolytic gene expression and poor clinical outcomes. Our results suggest that 18F-FDG SUVMax has potential value as a noninvasive, clinical indicator of tumor immunometabolic phenotypes in patients with resectable NSCLC and warrants investigation as a potential predictor of therapeutic response to immune-based treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

18F-FDG:

18F-fluorodeoxyglucose

CI:

Confidence interval

CT:

Computed tomography

DFS:

Disease-free survival

DISTHG:

Downregulated Immune Signature of Tumors with High Glycolysis

FFPE:

Formalin-fixed, paraffin-embedded

HR:

Hazard ratio

ICI:

Immune checkpoint inhibitor

IHC:

Immunohistochemistry

IQR:

Interquartile range

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PET:

Positron emission tomography

PROSPECT:

Profiling of Resistance Patterns and Oncogenic Signaling Pathways in Evaluation of Cancers of the Thorax

SUV:

Standardized uptake value

TAIC:

Tumor-associated immune cell

TLG:

Total lesion glycolysis

UISTHG:

Upregulated Immune Signature of Tumors with High Glycolysis

VOI:

Volume of interest

References

  1. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. https://doi.org/10.1056/NEJMoa1507643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non–small-cell lung cancer. N Engl J Med 373:123–135. https://doi.org/10.1056/NEJMoa1504627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833. https://doi.org/10.1056/NEJMoa1606774

    Article  CAS  PubMed  Google Scholar 

  4. Forde PM, Chaft JE, Smith KN et al (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med 378:1976–1986. https://doi.org/10.1056/NEJMoa1716078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, Kreutz M (2017) Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol. https://doi.org/10.3389/fimmu.2017.00248

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chang C-H, Qiu J, O’Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241. https://doi.org/10.1016/j.cell.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fischer K, Hoffmann P, Voelkl S et al (2007) Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood 109:3812–3819. https://doi.org/10.1182/blood-2006-07-035972

    Article  CAS  PubMed  Google Scholar 

  8. Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73:1524–1535. https://doi.org/10.1158/0008-5472.can-12-2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, Mueller-Klieser W (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    CAS  PubMed  Google Scholar 

  10. Cascone T, McKenzie JA, Mbofung RM et al (2018) Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27:977–87.e4. https://doi.org/10.1016/j.cmet.2018.02.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Dong M, Sun X, Li W, Xing L, Yu J (2016) Prognostic value of 18F-FDG PET/CT in surgical non-small cell lung cancer: a meta-analysis. PLoS ONE 11:e0146195. https://doi.org/10.1371/journal.pone.0146195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pak K, Cheon GJ, Nam HY, Kim SJ, Kang KW, Chung JK, Kim EE, Lee DS (2014) Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: A systematic review and meta-analysis. J Nucl Med 55:884–890. https://doi.org/10.2967/jnumed.113.133801

    Article  CAS  PubMed  Google Scholar 

  13. Im HJ, Pak K, Cheon GJ, Kang KW, Kim SJ, Kim IJ, Chung JK, Kim EE, Lee DS (2015) Prognostic value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging 42:241–251. https://doi.org/10.1007/s00259-014-2903-7

    Article  CAS  PubMed  Google Scholar 

  14. Kwon HR, Pahk K, Park S et al (2019) Prognostic value of metabolic information in advanced gastric cancer using preoperative (18)F-FDG PET/CT. Nucl Med Mol Imaging 53:386–395. https://doi.org/10.1007/s13139-019-00622-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruzzi JF, Munden RF (2006) PET/CT imaging of lung cancer. J Thorac Imaging 21:123–136

    Article  PubMed  Google Scholar 

  16. Cardnell RJG, Behrens C, Diao L et al (2015) An integrated molecular analysis of lung adenocarcinomas identifies potential therapeutic targets among TTF1-negative tumors, including DNA repair proteins and Nrf2. Clin Cancer Res 21:3480–3491. https://doi.org/10.1158/1078-0432.ccr-14-3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skoulidis F, Byers LA, Diao L et al (2015) Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov 5:860–877. https://doi.org/10.1158/2159-8290.cd-14-1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang H, Xiao G, Behrens C et al (2013) A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res 19:1577–1586. https://doi.org/10.1158/1078-0432.ccr-12-2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohammed N, Kestin LL, Grills IS, Battu M, Fitch DL, C-yO W, Margolis JH, Chmielewski GW, Welsh RJ (2011) Rapid disease progression with delay in treatment of non–small-cell lung cancer. Int J Radiat Oncol Biol Phys 79:466–472. https://doi.org/10.1016/j.ijrobp.2009.11.029

    Article  PubMed  Google Scholar 

  20. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L (2007) The IASLC lung cancer staging project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol 2:706–714. https://doi.org/10.1097/JTO.0b013e31812f3c1a

    Article  PubMed  Google Scholar 

  21. Mhlanga JC, Chirindel A, Lodge MA, Wahl RL, Subramaniam RM (2018) Quantitative PET/CT in clinical practice: assessing the agreement of PET tumor indices using different clinical reading platforms. Nucl Med Commun 39:154–160. https://doi.org/10.1097/mnm.0000000000000786

    Article  PubMed  Google Scholar 

  22. Werner-Wasik M, Nelson AD, Choi W et al (2012) What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int J Radiat Oncol Biol Phys 82:1164–1171. https://doi.org/10.1016/j.ijrobp.2010.12.055

    Article  PubMed  Google Scholar 

  23. Nilsson MB, Sun H, Diao L et al (2017) Stress hormones promote EGFR inhibitor resistance in NSCLC: implications for combinations with beta-blockers. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aao4307

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cesano A (2015) nCounter® PanCancer immune profiling panel (NanoString Technologies Inc, Seattle, WA). J Immunother Cancer 3:42. https://doi.org/10.1186/s40425-015-0088-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful spproach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

    Google Scholar 

  26. Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, Ritchie ME (2016) RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res. https://doi.org/10.12688/f1000research.9005.3

    Article  PubMed  Google Scholar 

  27. Krämer A, Green J, Pollard J Jr, Tugendreich S (2013) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30:523–530. https://doi.org/10.1093/bioinformatics/btt703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, Wallden B, Marincola FM, Cesano A (2018) Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from the cancer genome atlas (TCGA). J Immunother Cancer 6:63. https://doi.org/10.1186/s40425-018-0367-1

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jerby-Arnon L, Shah P, Cuoco MS et al (2018) A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175:984–97.e24. https://doi.org/10.1016/j.cell.2018.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parra ER, Behrens C, Rodriguez-Canales J et al (2016) Image analysis-based assessment of PD-L1 and tumor-associated immune cells density supports distinct intratumoral microenvironment groups in non-small cell lung carcinoma patients. Clin Cancer Res 22:6278–6289. https://doi.org/10.1158/1078-0432.ccr-15-2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadara H, Choi M, Zhang J et al (2017) Whole-exome sequencing and immune profiling of early-stage lung adenocarcinoma with fully annotated clinical follow-up. Ann Oncol 28:75–82. https://doi.org/10.1093/annonc/mdw436

    Article  CAS  PubMed  Google Scholar 

  32. Győrffy B, Surowiak P, Budczies J, Lánczky A (2013) Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE 8:e82241. https://doi.org/10.1371/journal.pone.0082241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.

  34. Chung AS, Wu X, Zhuang G et al (2013) An interleukin-17–mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19:1114. https://doi.org/10.1038/nm.3291

    Article  CAS  PubMed  Google Scholar 

  35. Charles KA, Kulbe H, Soper R et al (2009) The tumor-promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119:3011–3023. https://doi.org/10.1172/jci39065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alfaro C, Teijeira A, Oñate C et al (2016) Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res 22:3924–3936. https://doi.org/10.1158/1078-0432.Ccr-15-2463

    Article  CAS  PubMed  Google Scholar 

  37. Wellenstein MD, de Visser KE (2018) Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48:399–416. https://doi.org/10.1016/j.immuni.2018.03.004

    Article  CAS  PubMed  Google Scholar 

  38. Liu J, Zhang C, Wu R, Lin M, Liang Y, Liu J, Wang X, Yang B, Feng Z (2015) RRAD inhibits the Warburg effect through negative regulation of the NF-KB signaling. Oncotarget 6:14982–14992. https://doi.org/10.18632/oncotarget.3719

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Nicolay BN, Chick JM et al (2017) The metabolic function of cyclin D3–CDK6 kinase in cancer cell survival. Nature 546:426. https://doi.org/10.1038/nature22797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brand A, Singer K, Koehl Gudrun E et al (2016) LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24:657–671. https://doi.org/10.1016/j.cmet.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  41. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669. https://doi.org/10.1016/j.cell.2016.12.039

    Article  CAS  PubMed  Google Scholar 

  42. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Timm KN, Kennedy BW, Brindle KM (2016) Imaging tumor metabolism to assess disease progression and treatment response. Clin Cancer Res 22:5196–5203. https://doi.org/10.1158/1078-0432.ccr-16-0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mamede M, Higashi T, Kitaichi M et al (2005) 18F-FDG Uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia (New York, N. Y.) 7:369–379. https://doi.org/10.1593/neo.04577

    Article  CAS  Google Scholar 

  45. Kaira K, Serizawa M, Koh Y et al (2014) Biological significance of 18F-FDG uptake on PET in patients with non-small-cell lung cancer. Lung Cancer 83:197–204. https://doi.org/10.1016/j.lungcan.2013.11.025

    Article  PubMed  Google Scholar 

  46. Zhou X, Chen R, Xie W, Ni Y, Liu J, Huang G (2014) Relationship between 18F-FDG accumulation and lactate dehydrogenase A expression in lung adenocarcinomas. J Nucl Med 55:1766–1771. https://doi.org/10.2967/jnumed.114.145490

    Article  CAS  PubMed  Google Scholar 

  47. Goodwin J, Neugent ML, Lee SY et al (2017) The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat Commun 8:15503. https://doi.org/10.1038/ncomms15503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boroughs LK, DeBerardinis RJ (2015) Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 17:351. https://doi.org/10.1038/ncb3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Contractor KB, Aboagye EO (2009) Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J Nucl Med 50:97S–105S. https://doi.org/10.2967/jnumed.108.057273

    Article  CAS  PubMed  Google Scholar 

  50. Ottensmeier CH, Perry KL, Harden EL et al (2016) Upregulated glucose metabolism correlates inversely with CD8+ T-cell infiltration and survival in squamous cell carcinoma. Cancer Res 76:4136–4148. https://doi.org/10.1158/0008-5472.can-15-3121

    Article  CAS  PubMed  Google Scholar 

  51. Soo RA, Chen Z, Yan Teng RS, Tan HL, Iacopetta B, Tai BC, Soong R (2018) Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget 9:24801–24820. https://doi.org/10.18632/oncotarget.24835

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W, Wang J, Wang X, Fu Y-X (2016) Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell 29:285–296. https://doi.org/10.1016/j.ccell.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lopci E, Toschi L, Grizzi F et al (2016) Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur J Nucl Med Mol Imaging 43:1954–1961. https://doi.org/10.1007/s00259-016-3425-2

    Article  CAS  PubMed  Google Scholar 

  54. Kaira K, Higuchi T, Naruse I et al (2018) Metabolic activity by (18)F-FDG-PET/CT is predictive of early response after nivolumab in previously treated NSCLC. Eur J Nucl Med Mol Imaging 45:56–66. https://doi.org/10.1007/s00259-017-3806-1

    Article  CAS  PubMed  Google Scholar 

  55. Usmanij EA, de Geus-Oei LF, Troost EG, Peters-Bax L, van der Heijden EH, Kaanders JH, Oyen WJ, Schuurbiers OC, Bussink J (2013) 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J Nucl Med 54:1528–1534. https://doi.org/10.2967/jnumed.112.116921

    Article  CAS  PubMed  Google Scholar 

  56. Spigel DRCJ, Gettinger S, Chao BH, Dirix L, Schmid P et al (2018) FIR: Efficacy, safety, and biomarker analysis of a phase II open-label study of atezolizumab in PD-L1-selected patients with NSCLC. J Thorac Oncol 13:1733–1742

    Article  PubMed  PubMed Central  Google Scholar 

  57. Parra ER, Villalobos P, Behrens C et al (2018) Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J Immunother Cancer 6:48. https://doi.org/10.1186/s40425-018-0368-0

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cascone T, William WN, Weissferdt A et al (2019) Neoadjuvant nivolumab (N) or nivolumab plus ipilimumab (NI) for resectable non-small cell lung cancer (NSCLC): Clinical and correlative results from the NEOSTAR study. J Clin Oncol 37: suppl; abstr 8504. https://doi.org/10.1200/JCO.2019.37.15_suppl.8504

  59. Kwiatkowski DJ, Rusch VR, Chaft JE et al (2019) Neoadjuvant atezolizumab in resectable non-small cell lung cancer (NSCLC): interim analysis and biomarker data from a multicenter study (LCMC3). J Clin Oncol 37: suppl; abstr 8503. https://doi.org/10.1200/JCO.2019.37.15_suppl.8503

  60. Provenico M, Nadal E, Insa A et al (2019) Neoadjuvant chemo-immunotherapy for the treatment of stage IIIA resectable non-small cell lung cancer (NSCLC): a phase II multicenter exploratory study-Final data of patients who underwent surgical assessment. J Clin Oncol 37: suppl; abstr 8509. https://doi.org/10.1200/JCO.2019.37.15_suppl.8509

  61. Gandhi L, Rodríguez-Abreu D, Gadgeel S et al (2018) Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med 378:2078–2092. https://doi.org/10.1056/NEJMoa1801005

    Article  CAS  PubMed  Google Scholar 

  62. Lopes G, Wu Y-L, Kudaba I et al. (2018) Pembrolizumab (pembro) versus platinum-based chemotherapy (chemo) as first-line therapy for advanced/metastatic NSCLC with a PD-L1 tumor proportion score (TPS) ≥ 1%: Open-label, phase 3 KEYNOTE-042 study. J Clin Oncol. 36: LBA4-LBA. https://doi.org/10.1200/JCO.2018.36.18_suppl.LBA4

  63. Faubert B, Li KY, Cai L et al (2017) Lactate metabolism in human lung tumors. Cell 171:358–371. https://doi.org/10.1016/j.cell.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Momcilovic M, Jones A, Bailey ST et al (2019) In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature 575:380–384. https://doi.org/10.1038/s41586-019-1715-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hensley CT, Faubert B, Yuan Q et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164:681–694. https://doi.org/10.1016/j.cell.2015.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen PH, Cai L, Huffman K et al (2019) Metabolic diversity in human non-small cell lung cancer cells. Mol Cell 76:838–51.e5. https://doi.org/10.1016/j.molcel.2019.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the assistance of Mr. Alex Liu with the Division of Information Services, Oncology Care and Research IS at MD Anderson Cancer Center, and Mr. Donald Norwood with the Department of Scientific Publications at MD Anderson Cancer Center for his editorial assistance.

Funding

This work was supported in part by the National Cancer Institute (5 P50 CA070907; P50 CA221703; R01 CA187076; R01 CA184845, P30CA01667), the Cancer Prevention and Research Institute of Texas (RP170401), the American Society of Clinical Oncology 2018 Career Development Award (12895), the Department of Defense (W81XWH-07-1-0306), and the Bob Mayberry Foundation. This work was also supported in part by the Bruton Endowed Chair in Tumor Biology Funds, and the generous philanthropic contributions to the University of Texas MD Anderson Cancer Center Lung Cancer Moon Shot Program, the Khalifa Scholars Program (from Khalifa Bin Zayed Al Nahyan Foundation), the Advanced Scholar Program (from CG Johnson Foundation), and the Physician Scientist Program (from T.J. Martell Foundation).

Author information

Authors and Affiliations

Authors

Contributions

WP and TC contributed to conception and design. TC, WP, BA, and ERP contributed to development of methodology. TC, WP, BA, KGM, HK, ERP, PV, CB, AR, YW, JW, AW, CAM, and JF contributed to data acquisition. TC, WP, KGM, BA, ERP, PV, CB, AR, YW, AW, JJL, and DPW contributed to analysis and interpretation of data. KGM, BA, BS, MCBG, ERP, PV, HK, CB, AR, AAV, WLH, SGS, WNW, DLG, IIW, PH, JVH, BWC, YW, JW, JJL, DPW, AW, CAM, JF, GLW, DPW, WP, and TC wrote, reviewed, and revised the manuscript. TC, WP, JVH, and IIW contributed to administrative, technical, or material support. WP and TC contributed to study supervision.

Corresponding authors

Correspondence to Weiyi Peng or Tina Cascone.

Ethics declarations

Conflict of interest

M.C.B. Godoy has received research funding from Siemens Healthcare. W.N. William has received honoraria/speaker’s fees and/or participated in advisory boards from Roche/Genentech, Bristol-Myers Squibb, Eli Lilly, Merck, AstraZeneca, and Pfizer. D.L. Gibbons has received research funding from AstraZeneca, Janssen, and Takeda and has participated in advisory boards for AstraZeneca and Sanofi. P. Hwu is a consultant and/or has participated in advisory boards for Immatics, Dragonfly, Sanofi, and GlaxoSmithKline. S.G. Swisher has participated in advisory committees for Ethicon and for the Peter MacCallum Cancer Center. B.S. receives consulting fees from Bristol-Myers Squibb. J.V. Heymach has received research support from AstraZeneca, Bayer, GlaxoSmithKline, and Spectrum; participated in advisory committees for AstraZeneca, Boehringer Ingelheim, Exelixis, Genentech, GlaxoSmithKline, Guardant Health, Hengrui, Lilly, Novartis, Specrtum, EMD Serono, and Synta; and received royalties and/or licensing fees from Spectrum. P. Hwu and W. Peng have received research funding in the form of grants to MD Anderson Cancer Center from GlaxoSmith Kline. T. Cascone has received speaker’s fees from the Society for Immunotherapy of Cancer and Bristol-Myers Squibb; receives consulting/advisory role fees from MedImmune, Bristol-Myers Squibb and EMD Serono, and research funding to MD Anderson Cancer Center from Boehringer Ingelheim, MedImmune and Bristol-Myers Squibb. No potential conflicts of interest are disclosed by the other authors.

Ethical approval

The study was approved by The University of Texas MD Anderson Cancer Center's Institutional Review Board (PROSPECT—LAB07-0233).

Human and animal rights

All human studies were conducted in accordance with the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 840 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitchell, K.G., Amini, B., Wang, Y. et al. 18F-fluorodeoxyglucose positron emission tomography correlates with tumor immunometabolic phenotypes in resected lung cancer. Cancer Immunol Immunother 69, 1519–1534 (2020). https://doi.org/10.1007/s00262-020-02560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02560-5

Keywords

Navigation