Skip to main content

Advertisement

Log in

Lysosomal peptidases in innate immune cells: implications for cancer immunity

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cathepsins are lysosomal peptidases involved in intracellular protein catabolism as well as in various other physiological and pathological processes. Several members of the family, most notably cathepsins B, S, K and L, are frequently overexpressed in cancer and have been associated with remodeling of the proteins of the extracellular matrix, a process leading to tumor cell migration, invasion and metastasis. In addition, lysosomal cathepsins play a role in innate and adaptive immunity, regulation of antigen presentation, Toll-like receptor signaling, cytokine secretion, apoptosis, autophagy, differentiation, migration and cytotoxicity. In cancer, the cells of innate immunity, such as myeloid cells, are often subverted to the regulatory immunosuppressive phenotype. Most studies indicate that lysosomal cathepsins reinforce the pro-tumoral activity of myeloid-derived suppressor cells and tumor-associated macrophages as well as of neutrophils. On the other hand, in cytotoxic natural killer cells, tumor cells suppress lysosomal peptidases in their activation of perforin and granzymes, thus diminishing their killing ability. With multifaceted actions, lysosomal peptidases constitute an important regulatory mechanism for fine-tuning the anti-tumor immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AEP:

Asparaginyl endopeptidase

Arp 2/3:

Actin-related proteins 2/3

COX2:

Cyclooxygenase 2

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cells

HLA-DM:

Human leukocyte antigen DM

HMGB1:

High-mobility group box 1

GILT:

Γ-interferon-inducible thiol reductase

ICAM-1:

Intercellular adhesion molecule 1

IRAK4:

IL-1 receptor-associated kinase 4

LFA-1:

Lymphocyte function-associated antigen 1

Mac-1:

Macrophage-1 antigen

MDSC:

Myeloid-derived suppressor cells

MHC II:

Major histocompatibility complex class II

NET:

Neutrophil extracellular traps

NK:

Natural killer

NOX2:

NADPH oxidase 2

PAR2:

Protease-activated receptor 2

SIRP α:

Signal regulatory protein α

STAT3:

Signal transducer and activator of transcription 3

TAM:

Tumor-associated macrophages

TLR:

Toll-like receptors

WASP:

Wiskott–Aldrich syndrome protein

References

  1. Pišlar A, Perišić Nanut M, Kos J (2015) Lysosomal cysteine peptidases—molecules signaling tumor cell death and survival. Semin Cancer Biol 35:168–179

    Article  Google Scholar 

  2. Kramer L, Turk D, Turk B (2017) The future of cysteine cathepsins in disease management. Trends Pharmacol Sci 38:873–898. https://doi.org/10.1016/j.tips.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  3. Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3:472–482. https://doi.org/10.1038/nri1110

    Article  CAS  PubMed  Google Scholar 

  4. Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM (2011) Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Med 208:643–651. https://doi.org/10.1084/jem.20100682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen L, Sigal LJ, Boes M, Rock KL (2004) Important role of cathepsin S in generating peptides for TAP-independent MHC class I cross presentation in vivo. Immunity 21:155–165. https://doi.org/10.1016/j.immuni.2004.07.004

    Article  CAS  PubMed  Google Scholar 

  6. Stoeckle C, Quecke P, Rückrich T, Burster T, Reich M, Weber E et al (2012) Cathepsin S dominates autoantigen processing in human thymic dendritic cells. J Autoimmun 38:332–343. https://doi.org/10.1016/j.jaut.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  7. Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC et al (2006) NOX2 controls phagosomal pH to regulate antigen processing during cross presentation by dendritic cells. Cell 126:205–218

    Article  CAS  Google Scholar 

  8. Balce DR, Allan ERO, McKenna N, Yates RM (2014) γ-interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J Biol Chem 289:31891–31904. https://doi.org/10.1074/jbc.M114.584391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitamura H, Kamon H, Sawa S, Park S-J, Katunuma N, Ishihara K et al (2005) IL-6-STAT3 controls intracellular MHC Class II αβ dimer level through cathepsin S activity in dendritic cells. Immunity 23:491–502. https://doi.org/10.1016/j.immuni.2005.09.010

    Article  CAS  PubMed  Google Scholar 

  10. Zavasnik-Bergant T (2005) Differentiation- and maturation-dependent content, localization, and secretion of cystatin C in human dendritic cells. J Leukoc Biol 78:122–134. https://doi.org/10.1189/jlb.0804451

    Article  CAS  PubMed  Google Scholar 

  11. Martino S, Tiribuzi R, Ciraci E, Makrypidi G, D’Angelo F, di Girolamo I et al (2011) Coordinated involvement of cathepsins S, D and cystatin C in the commitment of hematopoietic stem cells to dendritic cells. Int J Biochem Cell Biol 43:775–783. https://doi.org/10.1016/j.biocel.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  12. Pradere J-P, Dapito DH, Schwabe RF (2014) The Yin and Yang of Toll-like receptors in cancer. Oncogene 33:3485–3495

    Article  CAS  Google Scholar 

  13. Pribis JP, Al-Abed Y, Yang H, Gero D, Xu H, Montenegro MF et al (2015) The HIV Protease Inhibitor Saquinavir Inhibits HMGB1-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88. Mol Med 21:749–757

    Article  CAS  Google Scholar 

  14. Welsby I, Detienne S, N’Kuli F, Thomas S, Wouters S, Bechtold V et al (2016) Lysosome-dependent activation of human dendritic cells by the vaccine adjuvant QS-21. Front Immunol. 7:663

    PubMed  Google Scholar 

  15. Ugel S, De Sanctis F, Mandruzzato S, Bronte V (2015) Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest. 125:3365–3376. https://doi.org/10.1172/JCI80006

    Article  PubMed  PubMed Central  Google Scholar 

  16. Salpeter SJ, Pozniak Y, Merquiol E, Ben-Nun Y, Geiger T, Blum G (2015) A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene 34:6066–6078. https://doi.org/10.1038/onc.2015.51

    Article  CAS  PubMed  Google Scholar 

  17. Qi X, Man SM, Malireddi RKS, Karki R, Lupfer C, Gurung P et al (2016) Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. J Exp Med 213:2081–2097. https://doi.org/10.1084/jem.20151938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McComb S, Shutinoski B, Thurston S, Cessford E, Kumar K, Sad S (2014) Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase. J Immunol. 192:5671–5678

    Article  CAS  Google Scholar 

  19. Yang M, Liu J, Shao J, Qin Y, Ji Q, Zhang X et al (2014) Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Mol Cancer. 13:43. https://doi.org/10.1186/1476-4598-13-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li R, Zhou R, Wang H, Li W, Pan M, Yao X et al (2019) Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ. https://doi.org/10.1038/s41418-019-0312-y

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yao R-R, Li J-H, Zhang R, Chen R-X, Wang Y-H (2018) M2-polarized tumor-associated macrophages facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling pathway. World J Surg Oncol. 16:9

    Article  Google Scholar 

  22. Lee TK-W, Cheung VC-H, Lu P, Lau EYT, Ma S, Tang KH et al (2014) Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma. Hepatology. 60:179–191

    Article  CAS  Google Scholar 

  23. Lindahl C, Simonsson M, Bergh A, Thysell E, Antti H, Sund M, et al. Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genom Proteomics. 2009;6:149–59. http://cgp.iiarjournals.org/content/6/3/149.abstract

  24. Bakst RL, Xiong H, Chen C-H, Deborde S, Lyubchik A, Zhou Y et al (2017) Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Cancer Res 77:6400–6414

    Article  CAS  Google Scholar 

  25. Yan Q, Yuan W-B, Sun X, Zhang M-J, Cen F, Zhou S-Y et al (2018) Asparaginyl endopeptidase enhances pancreatic ductal adenocarcinoma cell invasion in an exosome-dependent manner and correlates with poor prognosis. Int J Oncol. https://doi.org/10.3892/ijo.2018.4318

    Article  PubMed  PubMed Central  Google Scholar 

  26. Giusti I, D’Ascenzo S, Millimaggi D, Taraboletti G, Carta G, Franceschini N et al (2008) Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles. Neoplasia 10:481–488. https://doi.org/10.1593/neo.08178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Burke M, Choksawangkarn W, Edwards N, Ostrand-Rosenberg S, Fenselau C (2014) Exosomes from myeloid-derived suppressor cells carry biologically active proteins. J Proteome Res 13:836–843

    Article  CAS  Google Scholar 

  28. Gounaris E, Tung CH, Restaino C, Maehr R, Kohler R, Joyce JA et al (2008) Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3:e2916. https://doi.org/10.1371/journal.pone.0002916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ha S-D, Martins A, Khazaie K, Han J, Chan BMC, Kim SO (2008) Cathepsin B is involved in the trafficking of TNF- -containing vesicles to the plasma membrane in macrophages. J Immunol. 181:690–697. https://doi.org/10.4049/jimmunol.181.1.690

    Article  CAS  PubMed  Google Scholar 

  30. Herroon MK, Rajagurubandara E, Rudy DL, Chalasani A, Hardaway AL, Podgorski I (2013) Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32:1580–1593. https://doi.org/10.1038/onc.2012.166

    Article  CAS  PubMed  Google Scholar 

  31. Edgington-Mitchell LE, Rautela J, Duivenvoorden HM, Jayatilleke KM, van der Linden WA, Verdoes M et al (2015) Cysteine cathepsin activity suppresses osteoclastogenesis of myeloid-derived suppressor cells in breast cancer. Oncotarget 6:8–10. https://doi.org/10.18632/oncotarget.4714

    Article  Google Scholar 

  32. Wilkinson RDA, Magorrian SM, Williams R, Young A, Small DM, Scott CJ et al (2015) CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget 6:29725–29739. https://doi.org/10.18632/oncotarget.5065

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mancini A, Jovanovic DV, He QW, Di Battista JA (2007) Site-specific proteolysis of cyclooxygenase-2: a putative step in inflammatory prostaglandin E2 biosynthesis. J Cell Biochem 101:425–441. https://doi.org/10.1002/jcb.21191

    Article  CAS  PubMed  Google Scholar 

  34. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16:431. https://doi.org/10.1038/nrc.2016.52

    Article  CAS  PubMed  Google Scholar 

  35. Pham CTN, Ivanovich JL, Raptis SZ, Zehnbauer B, Ley TJ (2004) Papillon-Lefèvre Syndrome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipeptidyl peptidase i deficiency in humans. J Immunol 173:7277. https://doi.org/10.4049/jimmunol.173.12.7277(LP – 7281)

    Article  CAS  PubMed  Google Scholar 

  36. Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S et al (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698

    Article  CAS  Google Scholar 

  37. Geraghty P, Rogan MP, Greene CM, Boxio RMM, Poiriert T, O’Mahony M et al (2007) Neutrophil elastase up-regulates cathepsin B and matrix metalloprotease-2 expression. J Immunol 178:5871–5878

    Article  CAS  Google Scholar 

  38. Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O et al (2018) Neutrophil extracellular traps induce endothelial cell activation and tissue factor production through interleukin-1alpha and cathepsin G. Arterioscler Thromb Vasc Biol 38:1901–1912

    Article  CAS  Google Scholar 

  39. Yui S, Osawa Y, Ichisugi T, Morimoto-Kamata R (2014) Neutrophil cathepsin G, but not elastase, induces aggregation of MCF-7 mammary carcinoma cells by a protease activity-dependent cell-oriented mechanism. Mediators Inflamm 2014:971409

    Article  Google Scholar 

  40. Jevnikar Z, Obermajer N, Kos J (2011) LFA-1 fine-tuning by cathepsin X. IUBMB Life. https://doi.org/10.1002/iub.505

    Article  PubMed  Google Scholar 

  41. Zhang Q-Q, Hu X-W, Liu Y-L, Ye Z-J, Gui Y-H, Zhou D-L et al (2015) CD11b deficiency suppresses intestinal tumor growth by reducing myeloid cell recruitment. Sci Rep 5:15948

    Article  CAS  Google Scholar 

  42. van Spriel AB, Leusen JH, van Egmond M, Dijkman HB, Assmann KJ, Mayadas TN et al (2001) Mac-1 (CD11b/CD18) is essential for Fc receptor-mediated neutrophil cytotoxicity and immunologic synapse formation. Blood 97:2478–2486

    Article  Google Scholar 

  43. Kaur K, Nanut MP, Ko M-W, Safaie T, Kos J, Jewett A (2018) Natural killer cells target and differentiate cancer stem-like cells/undifferentiated tumors: strategies to optimize their growth and expansion for effective cancer immunotherapy. Curr Opin Immunol 51:170–180

    Article  CAS  Google Scholar 

  44. Konjar Š, Sutton VR, Hoves S, Repnik U, Yagita H, Reinheckel T et al (2010) Human and mouse perforin are processed in part through cleavage by the lysosomal cysteine proteinase cathepsin L. Immunology 131:257–267. https://doi.org/10.1111/j.1365-2567.2010.03299.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Angelo ME, Bird PI, Peters C, Reinheckel T, Trapani JA, Sutton VR (2010) Cathepsin H is an additional convertase of pro-granzyme B. J Biol Chem 285:20514–20519. https://doi.org/10.1074/jbc.M109.094573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Magister S, Tseng H-C, Bui VT, Kos J, Jewett A (2015) Regulation of split anergy in natural killer cells by inhibition of cathepsins C and H and cystatin F. Oncotarget. 6:22310–22327. https://doi.org/10.18632/oncotarget.4208

    Article  PubMed  PubMed Central  Google Scholar 

  47. Prunk M, Nanut MP, Sabotic J, Svajger U, Kos J (2019) Increased cystatin F levels correlate with decreased cytotoxicity of cytotoxic T cells. Radiol Oncol 53:57–68. https://doi.org/10.2478/raon-2019-0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perišić Nanut M, Sabotič J, Švajger U, Jewett A, Kos J (2017) Cystatin F affects natural killer cell cytotoxicity. Front Immunol 8:1459. https://doi.org/10.3389/fimmu.2017.01459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mace EM, Zhang J, Siminovitch KA, Takei F (2010) Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells. Blood 116:1272–1279

    Article  CAS  Google Scholar 

  50. Urlaub D, Höfer K, Müller M-L, Watzl C (2017) LFA-1 activation in NK cells and their subsets: influence of receptors, maturation, and cytokine stimulation. J Immunol. 198:1944–1951. https://doi.org/10.4049/jimmunol.1601004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Professor Roger H. Pain for critical reading of the manuscript.

Funding

This work was supported by the Grants P4-0127 and J4-8227 from the Research Agency of the Republic of Slovenia (to Janko Kos).

Author information

Authors and Affiliations

Authors

Contributions

TJ drafted the manuscript and designed the figure. UPF, AP and JK finalized and complemented the manuscript.

Corresponding author

Correspondence to Janko Kos.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakoš, T., Pišlar, A., Pečar Fonović, U. et al. Lysosomal peptidases in innate immune cells: implications for cancer immunity. Cancer Immunol Immunother 69, 275–283 (2020). https://doi.org/10.1007/s00262-019-02447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02447-0

Keywords

Navigation