Skip to main content

Advertisement

Log in

Interleukin-38 in colorectal cancer: a potential role in precision medicine

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related death, partly due to a lack of reliable biomarkers for early diagnosis. To improve the outcome of CRC, it is critical to provide diagnosis at an early stage using promising sensitive/specific marker(s). Using immunohistochemistry and histopathology, IL-38 expression was determined in tissue arrays of CRC with different TNM status and depth of tumour invasion. Data were compared to IL-38 in adjacent non-cancer tissue and correlated with demographic information, including survival. A substantial reduction of IL-38 was detected in the CRC tissue compared to adjacent non-cancer colonic tissue. IL-38 correlated with the extent of tumour differentiation (P < 0.0001); CRC location in the left side of the colon (P < 0.05), and smaller tumour size (≤ 5 cm; P < 0.05). Receiver operating characteristic (ROC) curve analysis demonstrated both high specificity and high sensitivity of IL-38 for the diagnosis of CRC [area under the curve (AUC) = 0.89)]. By sub-group analysis, AUC of IL-38 for the diagnosis of CRC was higher in poorly differentiated, right-sided CRC or tumour size > 5 cm (all AUC > 0.9). Significantly, longer survival was observed for the IL-38high versus the IL-38low groups in CRC patients (P = 0.04). Survival was also longer for IL-38high patients with lymph node metastasis (P = 0.01) and TNM stage III-IV (P = 0.02). Multivariate analysis demonstrated that IL-38 (P = 0.05) and tumour invasion depth (P = 0.04) were independent factors for survival. High IL38 in CRC is an independent prognostic factor for the longer survival of CRC patients. IL-38 signalling may constitute a therapeutic target in CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

AUROC:

AUC of the ROC curve

CRC:

Colorectal cancer

CTLA-4:

Cytotoxic T-lymphocyte-associated protein 4

DCs:

Dendritic cells

IL:

Interleukin

MAPK:

Mitogen-activated protein kinase

NFkB:

Nuclear factor kappa B

PD-1:

Programmed cell death protein 1

ROC:

Receiver operating characteristic

TNM:

Tumour, node and metastasis

References

  1. Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Speizer FE, Willett WC (1994) A prospective study of family history and the risk of colorectal cancer. N Engl J Med 331(25):1669–1674. https://doi.org/10.1056/NEJM199412223312501

    Article  CAS  PubMed  Google Scholar 

  2. Siegel R, Desantis C, Jemal A (2014) Colorectal cancer statistics. CA Cancer J Clin 64(2):104–117. https://doi.org/10.3322/caac.21220

    Article  PubMed  Google Scholar 

  3. Welch HG, Robertson DJ (2016) Colorectal cancer on the decline-why screening can’t explain it all. N Engl J Med 374(17):1605–1607. https://doi.org/10.1056/NEJMp1600448

    Article  PubMed  Google Scholar 

  4. Seidel JA, Otsuka A, Kabashima K (2018) Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8:86. https://doi.org/10.3389/fonc.2018.00086

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J (2017) Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 17(4):268. https://doi.org/10.1038/nrc.2017.24

    Article  CAS  PubMed  Google Scholar 

  6. De Robertis M, Poeta ML, Signori E, Fazio VM (2018) Current understanding and clinical utility of miRNAs regulation of colon cancer stem cells. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2018.08.008

    Article  PubMed  Google Scholar 

  7. Mager LF, Wasmer MH, Rau TT, Krebs P (2016) Cytokine-induced modulation of colorectal cancer. Front Oncol 6:96. https://doi.org/10.3389/fonc.2016.00096

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dinarello C, Arend W, Sims J, Smith D, Blumberg H, O’Neill L, Goldbach-Mansky R, Pizarro T, Hoffman H, Bufler P, Nold M, Ghezzi P, Mantovani A, Garlanda C, Boraschi D, Rubartelli A, Netea M, van der Meer J, Joosten L, Mandrup-Poulsen T, Donath M, Lewis E, Pfeilschifter J, Martin M, Kracht M, Muehl H, Novick D, Lukic M, Conti B, Solinger A, Kelk P, van de Veerdonk F, Gabel C (2010) IL-1 family nomenclature. Nat Immunol 11(11):973. https://doi.org/10.1038/ni1110-973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takeuchi Y, Seki T, Kobayashi N, Sano K, Shigemura T, Shimojo H, Matsumoto K, Agematsu K (2018) Analysis of serum IL-38 in juvenile-onset systemic lupus erythematosus. Mod Rheumatol. https://doi.org/10.1080/14397595.2018.1436118

    Article  PubMed  Google Scholar 

  10. Yu Z, Liu J, Zhang R, Huang X, Sun T, Wu Y, Hambly BD, Bao S (2017) IL-37 and 38 signalling in gestational diabetes. J Reprod Immunol 124:8–14. https://doi.org/10.1016/j.jri.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  11. Takada K, Okamoto T, Tominaga M, Teraishi K, Akamine T, Takamori S, Katsura M, Toyokawa G, Shoji F, Okamoto M, Oda Y, Hoshino T, Maehara Y (2017) Clinical implications of the novel cytokine IL-38 expressed in lung adenocarcinoma: possible association with PD-L1 expression. PLoS One 12(7):e0181598. https://doi.org/10.1371/journal.pone.0181598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Novellasdemunt L, Antas P, Li VS (2015) Targeting Wnt signaling in colorectal cancer. A review in the theme: cell signaling: proteins, pathways and mechanisms. Am J Physiol Cell Physiol 309(8):C511–C521. https://doi.org/10.1152/ajpcell.00117.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK, Halling KC, Cunningham JM, Boardman LA, Qian C, Christensen E, Schmidt SS, Roche PC, Smith DI, Thibodeau SN (2000) Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 26(2):146–147. https://doi.org/10.1038/79859

    Article  CAS  PubMed  Google Scholar 

  14. Chen L, Zhu C, Li F, Wang Y, Bao R, Cao Z, Xiang X, Yan L, Lin L, Zhao G, Xie Q, Bao S, Wang H (2018) Correlation between hepatic human males absent on the first (hMOF) and viral persistence in chronic hepatitis B patients. Cell Biosci 8:14. https://doi.org/10.1186/s13578-018-0215-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou T, Sun Y, Li M, Ding Y, Yin R, Li Z, Xie Q, Bao S, Cai W (2018) Enhancer of zeste homolog 2-catalysed H3K27 trimethylation plays a key role in acute-on-chronic liver failure via TNF-mediated pathway. Cell Death Dis 9(6):590. https://doi.org/10.1038/s41419-018-0670-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chami B, Yeung A, Buckland M, Liu H, Fong GM, Tao K, Bao S (2017) CXCR3 plays a critical role for host protection against Salmonellosis. Sci Rep 7(1):10181. https://doi.org/10.1038/s41598-017-09150-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cao Z, Li Z, Wang H, Liu Y, Xu Y, Mo R, Ren P, Chen L, Lu J, Li H, Zhuang Y, Liu Y, Wang X, Zhao G, Tang W, Xiang X, Cai W, Liu L, Bao S, Xie Q (2017) Algorithm of Golgi protein 73 and liver stiffness accurately diagnoses significant fibrosis in chronic HBV infection. Liver Int 37(11):1612–1621. https://doi.org/10.1111/liv.13536

    Article  CAS  PubMed  Google Scholar 

  18. Ueno H, Kajiwara Y, Shimazaki H, Shinto E, Hashiguchi Y, Nakanishi K, Maekawa K, Katsurada Y, Nakamura T, Mochizuki H, Yamamoto J, Hase K (2012) New criteria for histologic grading of colorectal cancer. Am J Surg Pathol 36(2):193–201. https://doi.org/10.1097/PAS.0b013e318235edee

    Article  PubMed  Google Scholar 

  19. Chen CH, Hsieh MC, Hsiao PK, Lin EK, Lu YJ, Wu SY (2017) A critical reappraisal for the value of tumor size as a prognostic variable in rectal adenocarcinoma. J Cancer 8(10):1927–1934. https://doi.org/10.7150/jca.17930

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ghidini M, Petrelli F, Tomasello G (2018) Right versus left colon cancer: resectable and metastatic disease. Curr Treat Options Oncol 19(6):31. https://doi.org/10.1007/s11864-018-0544-y

    Article  PubMed  Google Scholar 

  21. Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383(9927):1490–1502. https://doi.org/10.1016/S0140-6736(13)61649-9

    Article  PubMed  Google Scholar 

  22. van de Veerdonk FL, de Graaf DM, Joosten LA, Dinarello CA (2018) Biology of IL-38 and its role in disease. Immunol Rev 281(1):191–196. https://doi.org/10.1111/imr.12612

    Article  CAS  PubMed  Google Scholar 

  23. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140(6):1807–1816. https://doi.org/10.1053/j.gastro.2011.01.057

    Article  CAS  PubMed  Google Scholar 

  24. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771. https://doi.org/10.1038/nrc3611

    Article  CAS  PubMed  Google Scholar 

  25. Takenaka SI, Kaieda S, Kawayama T, Matsuoka M, Kaku Y, Kinoshita T, Sakazaki Y, Okamoto M, Tominaga M, Kanesaki K, Chiba A, Miyake S, Ida H, Hoshino T (2015) IL-38: a new factor in rheumatoid arthritis. Biochem Biophys Rep 4:386–391. https://doi.org/10.1016/j.bbrep.2015.10.015

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rudloff I, Godsell J, Nold-Petry CA, Harris J, Hoi A, Morand EF, Nold MF (2015) Brief report: interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol 67(12):3219–3225. https://doi.org/10.1002/art.39328

    Article  CAS  PubMed  Google Scholar 

  27. Ciccia F, Accardo-Palumbo A, Alessandro R, Alessandri C, Priori R, Guggino G, Raimondo S, Carubbi F, Valesini G, Giacomelli R, Rizzo A, Triolo G (2015) Interleukin-36alpha axis is modulated in patients with primary Sjogren’s syndrome. Clin Exp Immunol 181(2):230–238. https://doi.org/10.1111/cei.12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F (2016) Distinct expression of interleukin (IL)-36alpha, beta and gamma, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 184(2):159–173. https://doi.org/10.1111/cei.12761

    Article  CAS  PubMed  Google Scholar 

  29. Ummarino D (2017) Experimental arthritis: IL-38 promotes anti-inflammatory effects. Nat Rev Rheumatol 13(5):260. https://doi.org/10.1038/nrrheum.2017.55

    Article  PubMed  Google Scholar 

  30. Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia. Semin Immunopathol 35(2):229–244. https://doi.org/10.1007/s00281-012-0352-6

    Article  CAS  PubMed  Google Scholar 

  31. Catalan-Dibene J, McIntyre LL, Zlotnik A (2018) Interleukin 30 to interleukin 40. J Interferon Cytokine Res 38(10):423–439. https://doi.org/10.1089/jir.2018.0089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, Olleros ML, Vesin D, Garcia I, Ronchi F, Sallusto F, Sims JE, Gabay C (2012) IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4 + T cells. Blood 120(17):3478–3487. https://doi.org/10.1182/blood-2012-06-439026

    Article  CAS  PubMed  Google Scholar 

  33. Lee MS, Menter DG, Kopetz S (2017) Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Cancer Netw 15(3):411–419

    Article  Google Scholar 

  34. Venook AP (2017) Right-sided vs left-sided colorectal cancer. Clin Adv Hematol Oncol 15(1):22–24

    PubMed  Google Scholar 

  35. Kato T, Alonso S, Muto Y, Perucho M, Rikiyama T (2016) Tumor size is an independent risk predictor for metachronous colorectal cancer. Oncotarget 7(14):17896–17904. https://doi.org/10.18632/oncotarget.7555

    Article  PubMed  PubMed Central  Google Scholar 

  36. Saha S, Kanaan MN, Shaik M, Abadeer B, Korant A, Krishnamoorthy M, Kaushal S, Singh TT, Arora ML, Wiese D (2013) Tumor size as a prognostic factor for patients with colon cancer undergoing sentinel lymph node mapping and conventional surgery. J Clin Oncol. https://doi.org/10.1200/jco.2013.31.4_suppl.546

    Article  Google Scholar 

  37. Marsland BJ, Trompette A, Gollwitzer ES (2015) The gut-lung axis in respiratory disease. Ann Am Thorac Soc 12(Suppl 2):S150–S156. https://doi.org/10.1513/AnnalsATS.201503-133AW

    Article  PubMed  Google Scholar 

  38. Lin JH, Giovannucci E (2010) Sex hormones and colorectal cancer: what have we learned so far? J Natl Cancer Inst 102(23):1746–1747. https://doi.org/10.1093/jnci/djq444

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rogers AC, Winter DC, Heeney A, Gibbons D, Lugli A, Puppa G, Sheahan K (2016) Systematic review and meta-analysis of the impact of tumour budding in colorectal cancer. Br J Cancer 115(7):831–840. https://doi.org/10.1038/bjc.2016.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the staff of the Department of Pathology, Tongren Hospital, Shanghai Jiao University School of Medicine, and staff of the Discipline of Pathology, Sydney Medical School, The University of Sydney.

Funding

Shanghai Jiaotong University Medical Professional Cross Fund (Kun Tao) and the Joint Research Initiative Grant from Shanghai Jiaotong University, China (Kun Tao and Shisan Bao). The Natural Science Foundation of Shanghai, China 16ZR1432600 (Kun Tao), School of Medical Sciences, The University of Sydney Small Equipment Grant (Shisan Bao) and SJTU Research Project grant, The University of Sydney 2019 (Shisan Bao) are acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

FC: performed the experiment, analysed the data, and wrote the manuscript. FZ and ZT: performed histopathology. BH, SB and KT: designed the experiment and critically reviewed the manuscript. SB, and KT: provided financial support for the experiment.

Corresponding authors

Correspondence to Shisan Bao or Kun Tao.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval and ethical standards

Our current experiment has been approved by the Human Ethics Committee of Tongren Hospital, Shanghai Jiaotong University School of Medicine for the use of the tissues and the associated deidentified clinical data (ZH2018ZDA33). The guidelines of the Declaration of Helsinki on Medical Research involving human subjects has been strictly adhered to.

Informed consent

The oral consent for surgery included consent for the tissues to be used for diagnostic and research purposes in a deidentified manner. A written explanation of the surgical procedures and the potential research use of the tissues was provided to all patients prior to surgery. All of the patients were adults who were older than 16 years.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zhang, F., Tan, Z. et al. Interleukin-38 in colorectal cancer: a potential role in precision medicine. Cancer Immunol Immunother 69, 69–79 (2020). https://doi.org/10.1007/s00262-019-02440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02440-7

Keywords

Navigation