Skip to main content
Log in

IL-10 inducible CD8+ regulatory T-cells are enriched in patients with multiple myeloma and impact the generation of antigen-specific T-cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor-mediated immunosuppression via regulatory T-cells is a key player among the various immune-escape mechanisms in multiple myeloma. We analyzed the generation, distribution, function and immunophenotype of CD8+CD28 regulatory T-cells in patients with multiple myeloma. Functionality of CD8+CD28 T-cells was assessed by immunological assays using ex vivo generated antigen-specific T-cells from patients with plasma cell dyscrasias and healthy donors. Detailed analysis of distribution, immunophenotype and cytotoxic potential of CD8+CD28 T-cells was performed by flow cytometry and ELISA. We found that the amount of CD8+CD28 T-cells was directly correlated with the suppression of antigen-specific T-cell responses in patients with plasma cell dyscrasia. Analyzing the CD8+CD28 T-cells in detail, increased numbers of these cells were observed in the bone marrow (i.e., tumor microenvironment) of patients with plasma cell dyscrasia. Furthermore, we identified the expression of lymphocyte function-associated antigen 1 (LFA-1) as a marker of immunosuppression and defined the CD8+CD28CD57+LFA-1high population as the relevant immunosuppressive compartment. These regulatory T-cells act as immunosuppressors via soluble factors and incubation with IL-10 augmented their immunosuppressive capacity. The immunosuppressive regulatory network of IL-10 and the CD8+CD28CD57+LFA-1high regulatory T-cells show unique characteristics and contribute to the tumor immune escape mechanism in patients with multiple myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APD:

Advanced plasma-cell disease

EPD:

Early plasma-cell disease

HD:

Healthy donor

LFA-1:

Lymphocyte function-associated antigen 1

MGUS:

Monoclonal gammopathy of undetermined significance

MM:

Multiple myeloma

MNC:

Mononuclear cells

PB:

Peripheral blood

PCD:

Plasma cell dyscrasia

SLE:

Systemic lupus erythematosus

References

  1. Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, Franceschi C, Passeri M, Sansoni P (1996) Expansion of cytotoxic CD8+ CD28− T cells in healthy ageing people, including centenarians. Immunology 88(4):501–507

    Article  CAS  Google Scholar 

  2. Strioga M, Pasukoniene V, Characiejus D (2011) CD8+ CD28− and CD8+ CD57+ T cells and their role in health and disease. Immunology 134(1):17–32. https://doi.org/10.1111/j.1365-2567.2011.03470.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Filaci G, Bacilieri S, Fravega M, Monetti M, Contini P, Ghio M, Setti M, Puppo F, Indiveri F (2001) Impairment of CD8+ T suppressor cell function in patients with active systemic lupus erythematosus. J Immunol 166(10):6452–6457

    Article  CAS  Google Scholar 

  4. Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, Villaggio B, Ferrera A, Kunkl A, Rizzi M, Ferrera F, Balestra P, Ghio M, Contini P, Setti M, Olive D, Azzarone B, Carmignani G, Ravetti JL, Torre G, Indiveri F (2007) CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 179(7):4323–4334

    Article  CAS  Google Scholar 

  5. Balashov KE, Khoury SJ, Hafler DA, Weiner HL (1995) Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J Clin Invest 95(6):2711–2719. https://doi.org/10.1172/JCI117973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105(2):117–125

    Article  CAS  Google Scholar 

  7. Monteiro J, Batliwalla F, Ostrer H, Gregersen PK (1996) Shortened telomeres in clonally expanded CD28-CD8+ T cells imply a replicative history that is distinct from their CD28+ CD8+ counterparts. J Immunol 156(10):3587–3590

    PubMed  CAS  Google Scholar 

  8. Borthwick NJ, Lowdell M, Salmon M, Akbar AN (2000) Loss of CD28 expression on CD8(+) T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol 12(7):1005–1013

    Article  CAS  Google Scholar 

  9. Chiu WK, Fann M, Weng NP (2006) Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J Immunol 177(11):7802–7810

    Article  CAS  Google Scholar 

  10. Filaci G, Rizzi M, Setti M, Fenoglio D, Fravega M, Basso M, Ansaldo G, Ceppa P, Borgonovo G, Murdaca G, Ferrera F, Picciotto A, Fiocca R, Torre G, Indiveri F (2005) Non-antigen-specific CD8(+) T suppressor lymphocytes in diseases characterized by chronic immune responses and inflammation. Ann N Y Acad Sci 1050:115–123. https://doi.org/10.1196/annals.1313.013

    Article  PubMed  CAS  Google Scholar 

  11. Filaci G, Fravega M, Negrini S, Procopio F, Fenoglio D, Rizzi M, Brenci S, Contini P, Olive D, Ghio M, Setti M, Accolla RS, Puppo F, Indiveri F (2004) Nonantigen specific CD8+ T suppressor lymphocytes originate from CD8+ CD28− T cells and inhibit both T-cell proliferation and CTL function. Hum Immunol 65(2):142–156. https://doi.org/10.1016/j.humimm.2003.12.001

    Article  PubMed  CAS  Google Scholar 

  12. Meloni F, Morosini M, Solari N, Passadore I, Nascimbene C, Novo M, Ferrari M, Cosentino M, Marino F, Pozzi E, Fietta AM (2006) Foxp3 expressing CD4+ CD25+ and CD8+ CD28− T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum Immunol 67(1–2):1–12. https://doi.org/10.1016/j.humimm.2005.11.005

    Article  PubMed  CAS  Google Scholar 

  13. Bernuzzi F, Fenoglio D, Battaglia F, Fravega M, Gershwin ME, Indiveri F, Ansari AA, Podda M, Invernizzi P, Filaci G (2010) Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis. J Autoimmun 35(3):176–180. https://doi.org/10.1016/j.jaut.2010.06.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Raja KR, Plasil M, Rihova L, Pelcova J, Adam Z, Hajek R (2013) Flow cytometry based enumeration and functional characterization of CD8 T regulatory cells in patients with multiple myeloma before and after lenalidomide plus dexamethasone treatment. Cytometry B Clin Cytom. https://doi.org/10.1002/cytob.21109

    Article  PubMed  Google Scholar 

  15. Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, Greil R, Johrer K (2016) T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol 9(1):116. https://doi.org/10.1186/s13045-016-0345-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Christensen O, Lupu A, Schmidt S, Condomines M, Belle S, Maier A, Hose D, Neuber B, Moos M, Kleist C, Terness P, Ho AD, Goldschmidt H, Klein B, Hundemer M (2009) Melan-A/MART1 analog peptide triggers anti-myeloma T-cells through crossreactivity with HM1.24. J Immunother 32(6):613–621. https://doi.org/10.1097/CJI.0b013e3181a95198

    Article  PubMed  CAS  Google Scholar 

  17. Neuber B, Herth I, Tolliver C, Schoenland S, Hegenbart U, Hose D, Witzens-Harig M, Ho AD, Goldschmidt H, Klein B, Hundemer M (2011) Lenalidomide enhances antigen-specific activity and decreases CD45RA expression of T cells from patients with multiple myeloma. J Immunol 187(2):1047–1056. https://doi.org/10.4049/jimmunol.1002460

    Article  PubMed  CAS  Google Scholar 

  18. Hundemer M, Schmidt S, Condomines M, Lupu A, Hose D, Moos M, Cremer F, Kleist C, Terness P, Belle S, Ho AD, Goldschmidt H, Klein B, Christensen O (2006) Identification of a new HLA-A2-restricted T-cell epitope within HM1.24 as immunotherapy target for multiple myeloma. Exp Hematol 34(4):486–496. https://doi.org/10.1016/j.exphem.2006.01.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Munder M, Engelhardt M, Knies D, Medenhoff S, Wabnitz G, Luckner-Minden C, Feldmeyer N, Voss RH, Kropf P, Muller I, Conradi R, Samstag Y, Theobald M, Ho AD, Goldschmidt H, Hundemer M (2013) Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion. PLoS One 8(5):e63521. https://doi.org/10.1371/journal.pone.0063521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Paccani SR, Finetti F, Davi M, Patrussi L, D’Elios MM, Ladant D, Baldari CT (2011) The Bordetella pertussis adenylate cyclase toxin binds to T cells via LFA-1 and induces its disengagement from the immune synapse. J Exp Med 208(6):1317–1330. https://doi.org/10.1084/jem.20101558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Munder M, Schneider H, Luckner C, Giese T, Langhans CD, Fuentes JM, Kropf P, Mueller I, Kolb A, Modolell M, Ho AD (2006) Suppression of T-cell functions by human granulocyte arginase. Blood 108(5):1627–1634. https://doi.org/10.1182/blood-2006-11-010389

    Article  PubMed  CAS  Google Scholar 

  22. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J, Ruppert T, Bolhuis RL, Melief CJ, Huber C, Stauss HJ, Theobald M (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2(10):962–970. https://doi.org/10.1038/ni1001-962

    Article  CAS  Google Scholar 

  23. Voss RH, Kuball J, Engel R, Guillaume P, Romero P, Huber C, Theobald M (2006) Redirection of T cells by delivering a transgenic mouse-derived MDM2 tumor antigen-specific TCR and its humanized derivative is governed by the CD8 coreceptor and affects natural human TCR expression. Immunol Res 34(1):67–87. https://doi.org/10.1385/IR:34:1:67

    Article  PubMed  CAS  Google Scholar 

  24. Knies D, Klobuch S, Xue SA, Birtel M, Echchannaoui H, Yildiz O, Omokoko T, Guillaume P, Romero P, Stauss H, Sahin U, Herr W, Theobald M, Thomas S, Voss RH (2016) An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 7(16):21199–21221. https://doi.org/10.18632/oncotarget.8385

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frassanito MA, Silvestris F, Cafforio P, Dammacco F (1998) CD8+/CD57 cells and apoptosis suppress T-cell functions in multiple myeloma. Br J Haematol 100(3):469–477

    Article  CAS  Google Scholar 

  26. Focosi D, Marco T, Kast RE, Maggi F, Ceccherini-Nelli L, Petrini M (2010) Progressive multifocal leukoencephalopathy: what’s new? Neuroscientist 16(3):308–323. https://doi.org/10.1177/1073858409356594

    Article  PubMed  CAS  Google Scholar 

  27. Frassanito MA, Silvestris F, Silvestris N, Cafforio P, Camarda G, Iodice G, Dammacco F (1998) Fas/Fas ligand (FasL)-deregulated apoptosis and IL-6 insensitivity in highly malignant myeloma cells. Clin Exp Immunol 114(2):179–188

    Article  CAS  Google Scholar 

  28. Verma NK, Kelleher D (2014) Adaptor regulation of LFA-1 signaling in T lymphocyte migration: potential druggable targets for immunotherapies? Eur J Immunol 44(12):3484–3499. https://doi.org/10.1002/eji.201344428

    Article  PubMed  CAS  Google Scholar 

  29. Chattopadhyay PK, Betts MR, Price DA, Gostick E, Horton H, Roederer M, De Rosa SC (2009) The cytolytic enzymes granzyme A, granzyme B, and perforin: expression patterns, cell distribution, and their relationship to cell maturity and bright CD57 expression. J Leukoc Biol 85(1):88–97. https://doi.org/10.1189/jlb.0208107

    Article  PubMed  CAS  Google Scholar 

  30. Weng NP, Akbar AN, Goronzy J (2009) CD28(−) T cells: their role in the age-associated decline of immune function. Trends Immunol 30(7):306–312. https://doi.org/10.1016/j.it.2009.03.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86. https://doi.org/10.1038/25764

    Article  PubMed  CAS  Google Scholar 

  32. Kandula S, Abraham C (2004) LFA-1 on CD4+ T cells is required for optimal antigen-dependent activation in vivo. J Immunol 173(7):4443–4451

    Article  CAS  Google Scholar 

  33. Shier P, Otulakowski G, Ngo K, Panakos J, Chourmouzis E, Christjansen L, Lau CY, Fung-Leung WP (1996) Impaired immune responses toward alloantigens and tumor cells but normal thymic selection in mice deficient in the beta2 integrin leukocyte function-associated antigen-1. J Immunol 157(12):5375–5386

    PubMed  CAS  Google Scholar 

  34. Perez OD, Mitchell D, Jager GC, South S, Murriel C, McBride J, Herzenberg LA, Kinoshita S, Nolan GP (2003) Leukocyte functional antigen 1 lowers T cell activation thresholds and signaling through cytohesin-1 and Jun-activating binding protein 1. Nat Immunol 4(11):1083–1092. https://doi.org/10.1038/ni984

    Article  PubMed  CAS  Google Scholar 

  35. Graf B, Bushnell T, Miller J (2007) LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse. J Immunol 179(3):1616–1624

    Article  CAS  Google Scholar 

  36. Anikeeva N, Somersalo K, Sims TN, Thomas VK, Dustin ML, Sykulev Y (2005) Distinct role of lymphocyte function-associated antigen-1 in mediating effective cytolytic activity by cytotoxic T lymphocytes. Proc Natl Acad Sci USA 102(18):6437–6442. https://doi.org/10.1073/pnas.0502467102

    Article  PubMed  CAS  Google Scholar 

  37. Guan Y, Jiang Z, Ciric B, Rostami AM, Zhang GX (2008) Upregulation of chemokine receptor expression by IL-10/IL-4 in adult neural stem cells. Exp Mol Pathol 85(3):232–236. https://doi.org/10.1016/j.yexmp.2008.07.003

    Article  PubMed  CAS  Google Scholar 

  38. Fenoglio D, Ferrera F, Fravega M, Balestra P, Battaglia F, Proietti M, Andrei C, Olive D, Antonio LC, Indiveri F, Filaci G (2008) Advancements on phenotypic and functional characterization of non-antigen-specific CD8+ CD28− regulatory T cells. Hum Immunol 69(11):745–750. https://doi.org/10.1016/j.humimm.2008.08.282

    Article  PubMed  CAS  Google Scholar 

  39. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, Ley TJ (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27(4):635–646. https://doi.org/10.1016/j.immuni.2007.08.014

    Article  CAS  Google Scholar 

  40. Efimova OV, Kelley TW (2009) Induction of granzyme B expression in T-cell receptor/CD28-stimulated human regulatory T cells is suppressed by inhibitors of the PI3K-mTOR pathway. BMC Immunol 10:59. https://doi.org/10.1186/1471-2172-10-59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

No relevant funding.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: Julian Plaumann, Melanie Engelhardt, Michael Hundemer. Acquisition of data: Julian Plaumann, Melanie Engelhardt, Brigitte Neuber, Eva Amman. Analysis and interpretation of data: Julian Plaumann, Melanie Engelhardt, Eva Amman, Hakim Echchannaoui, Mohamed H. S. Awwad, Michael Hundemer. Drafting of manuscript: Julian Plaumann, Michael Hundemer. Critical revision: Mohamed H. S. Awwad, Marc S. Raab, Jens Hillengass, Niels Halama, Carsten Müller-Tidow, Hartmut Goldschmidt.

Corresponding author

Correspondence to Michael Hundemer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All human studies were performed after obtaining written informed consent in accordance with the Declaration of Helsinki and were approved by the ethics committee of the Medical Faculty, University of Heidelberg according to the institutional guidelines. Data safety management was performed according to the data safety regulations of the University Hospital Heidelberg.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 154 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plaumann, J., Engelhardt, M., Awwad, M.H.S. et al. IL-10 inducible CD8+ regulatory T-cells are enriched in patients with multiple myeloma and impact the generation of antigen-specific T-cells. Cancer Immunol Immunother 67, 1695–1707 (2018). https://doi.org/10.1007/s00262-018-2230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2230-0

Keywords

Navigation