Skip to main content

Advertisement

Log in

Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Immune checkpoint blockade with anti-CTLA-4 and anti-PD-1 antibodies has shown promising results in the treatment of patients with advanced HCC. The anti-PD-1 antibody, nivolumab, is now approved for patients who have had progressive disease on the current standard of care. However, a subset of patients with advanced HCC treated with immune checkpoint inhibitors failed to respond to therapy. Here, we provide evidence of adaptive resistance to immune checkpoint inhibitors through upregulation of indoleamine 2,3-dioxygenase (IDO) in HCC. Anti-CTLA-4 treatment promoted an induction of IDO1 in resistant HCC tumors but not in tumors sensitive to immune checkpoint blockade. Using both subcutaneous and hepatic orthotopic models, we found that the addition of an IDO inhibitor increases the efficacy of treatment in HCC resistant tumors with high IDO induction. Furthermore, in vivo neutralizing studies demonstrated that the IDO induction by immune checkpoint blockade was dependent on IFN-γ. Similar findings were observed with anti-PD-1 therapy. These results provide evidence that IDO may play a role in adaptive resistance to immune checkpoint inhibitors in patients with HCC. Therefore, inhibiting IDO in combination with immune checkpoint inhibitors may add therapeutic benefit in tumors which overexpress IDO and should be considered for clinical evaluation in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

1-d-MT:

1-methyl-d-tryptophan

BLI:

Bioluminescent imaging

References

  1. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G (2016) Hepatocellular carcinoma. Nat Rev Dis Primers 2:16018. https://doi.org/10.1038/nrdp.2016.18

    Article  PubMed  Google Scholar 

  2. Greten TF, Duffy AG, Korangy F (2013) Hepatocellular carcinoma from an immunologic perspective. Clin Cancer Res 19:6678–6685. https://doi.org/10.1158/1078-0432.ccr-13-1721

    Article  PubMed  CAS  Google Scholar 

  3. Greten TF, Sangro B (2017) Targets for immunotherapy of liver cancer. J Hepatol. https://doi.org/10.1016/j.jhep.2017.09.007

    Article  PubMed  Google Scholar 

  4. Clark DP (2018) Biomarkers for immune checkpoint inhibitors: the importance of tumor topography and the challenges to cytopathology. Cancer Cytopathol 126:11–19. https://doi.org/10.1002/cncy.21951

    Article  PubMed  Google Scholar 

  5. El-Khoueiry AB, Sangro B, Yau T et al (2017) Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. https://doi.org/10.1016/s0140-6736(17)31046-2

    Article  PubMed  Google Scholar 

  6. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 168:707–723. https://doi.org/10.1016/j.cell.2017.01.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Duffy AG, Ulahannan SV, Makorova-Rusher O et al (2017) Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 66:545–551. https://doi.org/10.1016/j.jhep.2016.10.029

    Article  PubMed  CAS  Google Scholar 

  8. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Investig 117:1147–1154. https://doi.org/10.1172/jci31178

    Article  PubMed  CAS  Google Scholar 

  9. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, Muller AJ (2014) Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother 63:721–735. https://doi.org/10.1007/s00262-014-1549-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Munn DH, Mellor AL (2016) IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol 37:193–207. https://doi.org/10.1016/j.it.2016.01.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jusof FF, Bakmiwewa SM, Weiser S, Too LK, Metz R, Prendergast GC, Fraser ST, Hunt NH, Ball HJ (2017) Investigation of the tissue distribution and physiological roles of indoleamine 2,3-dioxygenase-2. Int J Tryptophan Res. https://doi.org/10.1177/1178646917735098

    Article  PubMed  PubMed Central  Google Scholar 

  12. Metz R, Smith C, DuHadaway JB et al (2014) IDO2 is critical for IDO1-mediated T-cell regulation and exerts a non-redundant function in inflammation. Int Immunol 26:357–367. https://doi.org/10.1093/intimm/dxt073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Prendergast GC, Mondal A, Dey S, Laury-Kleintop LD, Muller AJ (2018) Inflammatory reprogramming with IDO1 inhibitors: turning immunologically unresponsive ‘Cold’ tumors ‘Hot’. Trends Cancer 4:38–58. https://doi.org/10.1016/j.trecan.2017.11.005

    Article  PubMed  Google Scholar 

  14. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274. https://doi.org/10.1038/nm934

    Article  PubMed  CAS  Google Scholar 

  15. Korangy F, Hochst B, Manns MP, Greten TF (2010) Immunotherapy of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 4:345–353. https://doi.org/10.1586/egh.10.18

    Article  PubMed  CAS  Google Scholar 

  16. Pan K, Wang H, Chen MS et al (2008) Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol 134:1247–1253. https://doi.org/10.1007/s00432-008-0395-1

    Article  PubMed  CAS  Google Scholar 

  17. Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD (2016) Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 6:50–58. https://doi.org/10.1016/j.ebiom.2016.02.024

    Article  Google Scholar 

  18. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD (2015) Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 13:412–424. https://doi.org/10.1016/j.celrep.2015.08.077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP (2013) Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med 210:1389–1402. https://doi.org/10.1084/jem.20130066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Eggert T, Wolter K, Ji J et al (2016) Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30:533–547. https://doi.org/10.1016/j.ccell.2016.09.003

    Article  PubMed  CAS  Google Scholar 

  21. Kohlhapp FJ, Broucek JR, Hughes T et al (2015) NK cells and CD8+ T cells cooperate to improve therapeutic responses in melanoma treated with interleukin-2 (IL-2) and CTLA-4 blockade. J Immunother Cancer 3:18. https://doi.org/10.1186/s40425-015-0063-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sell S, Dietz M, Schneider A, Holtappels R, Mach M, Winkler TH (2015) Control of murine cytomegalovirus infection by gammadelta T cells. PLoS Pathog 11:e1004481. https://doi.org/10.1371/journal.ppat.1004481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Koblish HK, Hansbury MJ, Bowman KJ et al (2010) Hydroxyamidine inhibitors of indoleamine-2,3-dioxygenase potently suppress systemic tryptophan catabolism and the growth of IDO-expressing tumors. Mol Cancer Ther 9:489–498. https://doi.org/10.1158/1535-7163.Mct-09-0628

    Article  PubMed  CAS  Google Scholar 

  24. Ma C, Kesarwala AH, Eggert T et al (2016) NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 531:253–257. https://doi.org/10.1038/nature16969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Yu SJ, Yoon JH, Yang JI et al (2012) Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition. J Bioenerg Biomembr 44:101–115. https://doi.org/10.1007/s10863-012-9416-5

    Article  PubMed  CAS  Google Scholar 

  26. Kapanadze T, Gamrekelashvili J, Ma C et al (2013) Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma. J Hepatol 59:1007–1013. https://doi.org/10.1016/j.jhep.2013.06.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135:234–243. https://doi.org/10.1053/j.gastro.2008.03.020

    Article  PubMed  CAS  Google Scholar 

  28. Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, Logothetis C, Sharma P (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105:14987–14992. https://doi.org/10.1073/pnas.0806075105

    Article  PubMed  Google Scholar 

  29. Zou W, Chen L (2008) Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 8:467–477. https://doi.org/10.1038/nri2326

    Article  PubMed  CAS  Google Scholar 

  30. Sangro B, Gomez-Martin C, de la Mata M et al (2013) A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol 59:81–88. https://doi.org/10.1016/j.jhep.2013.02.022

    Article  PubMed  CAS  Google Scholar 

  31. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ (2017) Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 52:71–81. https://doi.org/10.1016/j.ctrv.2016.11.007

    Article  PubMed  CAS  Google Scholar 

  32. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF (2014) Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2:3. https://doi.org/10.1186/2051-1426-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  33. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88:100–108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gao J, Shi LZ, Zhao H et al (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167:397–404.e399. https://doi.org/10.1016/j.cell.2016.08.069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Koyama S, Akbay EA, Li YY et al (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501. https://doi.org/10.1038/ncomms10501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Restifo NP, Smyth MJ, Snyder A (2016) Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 16:121–126. https://doi.org/10.1038/nrc.2016.2

    Article  PubMed  CAS  Google Scholar 

  37. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116. https://doi.org/10.1126/scitranslmed.3006504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017. https://doi.org/10.1056/NEJMoa1414428

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muller AJ, DuHadaway JB, Chang MY et al (2010) Non-hematopoietic expression of IDO is integrally required for inflammatory tumor promotion. Cancer Immunol Immunother 59:1655–1663. https://doi.org/10.1007/s00262-010-0891-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shibata Y, Hara T, Nagano J et al (2016) The role of indoleamine 2,3-dioxygenase in diethylnitrosamine-induced liver carcinogenesis. PLoS One 11:e0146279. https://doi.org/10.1371/journal.pone.0146279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Broderick JM (2018) Pembrolizumab combo fails in melanoma. OncLive. https://www.onclive.com/web-exclusives/pembrolizumab-combo-fails-in-melanoma

  42. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532. https://doi.org/10.1056/NEJMoa1503093

    Article  PubMed  CAS  Google Scholar 

  43. Brown ZJ, Heinrich B, Steinberg SM, Yu SJ, Greten TF (2017) Safety in treatment of hepatocellular carcinoma with immune checkpoint inhibitors as compared to melanoma and non-small cell lung cancer. J Immunother Cancer 5:93. https://doi.org/10.1186/s40425-017-0298-2

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sangro B, Park J-W, Cruz CMD, Anderson J, Lang L, Neely J, Shaw JW, Cheng A-L (2016) A randomized, multicenter, phase 3 study of nivolumab vs sorafenib as first-line treatment in patients (pts) with advanced hepatocellular carcinoma (HCC): CheckMate-459. J Clin Oncol (suppl; abstr TPS4147)

Download references

Acknowledgements

We would like to thank J. Berzofsky and his lab for their helpful discussion. We would also like to thank J.M. Hernandez for advising on performing intra-hepatic injections.

Funding

Tim F. Greten is supported by the NIH intra-mural program (ZIA BC 01134).

Author information

Authors and Affiliations

Authors

Contributions

ZJB, SJY, and BH performed experiments. ZJB, CM, QF, FK, and TFG analyzed data. QF, MS, DA, and QZ assisted with experiments. ZJB and TFG conceived and designed the project. ZJB and TFG wrote the manuscript and all authors contributed to writing and providing feedback.

Corresponding author

Correspondence to Tim F. Greten.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Animal experiments

All experiments were performed according to the institutional guidelines and approved by a NCI-Bethesda (Bethesda, MD, USA) Institutional Animal Care and Use protocol. Mice were purchased from Charles River Laboratories (VA, USA) or The Jackson Laboratory (Bar Harbor, USA). Human blood samples (buffy coat) were obtained from the National Institutes of Health Blood Research Services.

Cell lines

RIL-175 cell line was obtained from Dr Lars Zander (University Hospital of Tübingen, Germany), BNL cell line was provided by Dr. Jesus Prieto (University of Navarra, Spain), HepG2 (Cat no: HB-8065) and Hep3B (Cat no: HB-8064) was purchased from ATCC.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 566 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, Z.J., Yu, S.J., Heinrich, B. et al. Indoleamine 2,3-dioxygenase provides adaptive resistance to immune checkpoint inhibitors in hepatocellular carcinoma. Cancer Immunol Immunother 67, 1305–1315 (2018). https://doi.org/10.1007/s00262-018-2190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2190-4

Keywords

Navigation