Skip to main content

Advertisement

Log in

T-lymphocyte profiles differ between keratoacanthomas and invasive squamous cell carcinomas of the human skin

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

T-lymphocytes are involved in tumor progression and regression. Actinic keratoses (AK) are atypical proliferations of keratinocytes of the skin. Some AK progress into invasive cutaneous squamous cell carcinomas (cSCC). Keratoacanthomas (KA) are either classified as a cSCC subtype or a benign tumor with histologic resemblance to well-differentiated cSCC as it is supposed to regress spontaneously. In contrast, cSCC represent malignant tumors that may metastasize.

Objectives

To compare the T-lymphocyte profiles of AK, KA and cSCC in relation to PD-L1 expression.

Methods

Tissue micro-arrays of 103 cases of AK, 43 cases of KA and 106 cases of cSCC were stained by immunohistochemistry for E-cadherin, CD3, CD4, CD8, FOXp3, and the receptor–ligand pair PD-1/PD-L1. Immunohistological scores were computationally determined to assess PD-L1 expression as well as the expression profiles of T-lymphocytes.

Results

AK had lower numbers of CD3+ and PD-1+ cells compared to KA and lower numbers of CD3+, CD8+ and PD-1+ cells in comparison with cSCC. KA showed significantly higher numbers of CD4+ and FOXp3+ cells as well as lower numbers of CD8+ cells in comparison with invasive cSCC. cSCC expressed significantly more PD-L1 in comparison with AK and KA. Among cSCC PD-L1 expression was higher in moderately and poorly-differentiated cSCC than in well-differentiated cSCC. Increased PD-L1 expression also correlated with increased numbers of CD4+, CD8+ and FOXp3+ cells in cSCC.

Conclusions

Tumor-associated T-lymphocyte infiltrates showed significant differences between AK, KA and invasive cSCC. PD-L1 expression correlated with invasion of T-cell infiltrates in invasive cSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AK:

Actinic keratosis

cSCC:

Cutaneous squamous cell carcinoma

KA:

Keratoacanthoma

NCT:

National Center of Tumor Diseases

OTR:

Organ transplant recipients

ROI:

Region of interest

TGF-β:

Transforming growth factor beta

TMA:

Tissue micro-array

References

  1. Schmults CD, Karia PS, Carter JB, Han J, Qureshi AA (2013) Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: a 10-year, single-institution cohort study. JAMA Dermatol 149:541–547. https://doi.org/10.1001/jamadermatol.2013.2139

    Article  PubMed  Google Scholar 

  2. Karia PS, Han J, Schmults CD (2013) Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States, 2012. J Am Acad Dermatol 68:957–966. https://doi.org/10.1016/j.jaad.2012.11.037

    Article  PubMed  Google Scholar 

  3. Lamberg AL, Solvsten H, Lei U et al (2016) The Danish nonmelanoma skin cancer dermatology database. Clin Epidemiol 8:633–636. https://doi.org/10.2147/CLEP.S99464

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM (2015) Incidence estimate of nonmelanoma skin cancer (Keratinocyte Carcinomas) in the US population, 2012. JAMA Dermatol 151:1081–1086. https://doi.org/10.1001/jamadermatol.2015.1187

    Article  PubMed  Google Scholar 

  5. Lobeck A, Weiss C, Orouji A et al. (2017) Single center analysis of the dermatosurgical patient cohort of a tumor center in Germany. Hautarzt 68:377–384. https://doi.org/10.1007/s00105-017-3951-2

    Article  PubMed  CAS  Google Scholar 

  6. Thompson AK, Kelley BF, Prokop LJ, Murad MH, Baum CL (2016) Risk factors for cutaneous squamous cell carcinoma recurrence, metastasis, and disease-specific death: a systematic review and meta-analysis. JAMA Dermatol 152:419–428. https://doi.org/10.1001/jamadermatol.2015.4994

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burnworth B, Popp S, Stark HJ, Steinkraus V, Brocker EB, Hartschuh W, Birek C, Boukamp P (2006) Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation. Oncogene 25:4399–4412. https://doi.org/10.1038/sj.onc.1209474

    Article  PubMed  CAS  Google Scholar 

  8. Gleich T, Chiticariu E, Huber M, Hohl D (2016) Keratoacanthoma: a distinct entity? Exp Dermatol 25:85–91. https://doi.org/10.1111/exd.12880

    Article  PubMed  Google Scholar 

  9. Kwiek B, Schwartz RA (2016) Keratoacanthoma (KA): an update and review. J Am Acad Dermatol 74:1220–1233. https://doi.org/10.1016/j.jaad.2015.11.033

    Article  PubMed  Google Scholar 

  10. Selmer J, Skov T, Spelman L, Weedon D (2016) Squamous cell carcinoma and keratoacanthomas are biologically distinct and can be diagnosed by light microscopy: a review. Histopathology 69:535–541. https://doi.org/10.1111/his.13018

    Article  PubMed  Google Scholar 

  11. Stockfleth E (2017) The importance of treating the field in actinic keratosis. J Eur Acad Dermatol Venereol 31(Suppl 2):8–11. https://doi.org/10.1111/jdv.14092

    Article  PubMed  Google Scholar 

  12. Fernandez Figueras MT (2017) From actinic keratosis to squamous cell carcinoma: pathophysiology revisited. J Eur Acad Dermatol Venereol 31(Suppl 2):5–7. https://doi.org/10.1111/jdv.14151

    Article  PubMed  Google Scholar 

  13. Cassarino DS, Derienzo DP, Barr RJ (2006) Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification—part two. J Cutan Pathol 33:261–279. https://doi.org/10.1111/j.0303-6987.2006.00516.x

    Article  PubMed  Google Scholar 

  14. Ra SH, Li X, Binder S (2011) Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol 24:963–973. https://doi.org/10.1038/modpathol.2011.39

    Article  PubMed  CAS  Google Scholar 

  15. Martincorena I, Roshan A, Gerstung M et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886. https://doi.org/10.1126/science.aaa6806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Siegel JA, Korgavkar K, Weinstock MA (2017) Current perspective on actinic keratosis: a review. Br J Dermatol 177:350–358. https://doi.org/10.1111/bjd.14852

    Article  PubMed  CAS  Google Scholar 

  17. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. https://doi.org/10.1146/annurev-immunol-031210-101324

    Article  PubMed  CAS  Google Scholar 

  18. Yanofsky VR, Mitsui H, Felsen D, Carucci JA (2013) Understanding dendritic cells and their role in cutaneous carcinoma and cancer immunotherapy. Clin Dev Immunol. 2013:624123. https://doi.org/10.1155/2013/624123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gajewski TF, Woo SR, Zha Y, Spaapen R, Zheng Y, Corrales L, Spranger S (2013) Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 25:268–276. https://doi.org/10.1016/j.coi.2013.02.009

    Article  PubMed  CAS  Google Scholar 

  20. Szturz P, Vermorken JB (2017) Immunotherapy in head and neck cancer: aiming at EXTREME precision. BMC Med 15:110. https://doi.org/10.1186/s12916-017-0879-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bluth MJ, Zaba LC, Moussai D et al (2009) Myeloid dendritic cells from human cutaneous squamous cell carcinoma are poor stimulators of T-cell proliferation. J Invest Dermatol 129:2451–2462. https://doi.org/10.1038/jid.2009.96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kambayashi Y, Fujimura T, Aiba S (2013) Comparison of immunosuppressive and immunomodulatory cells in keratoacanthoma and cutaneous squamous cell carcinoma. Acta Derm Venereol 93:663–668. https://doi.org/10.2340/00015555-1597

    Article  PubMed  CAS  Google Scholar 

  23. Lai C, August S, Behar R, Polak M, Ardern-Jones M, Theaker J, Al-Shamkhani A, Healy E (2015) Characteristics of immunosuppressive regulatory T cells in cutaneous squamous cell carcinomas and role in metastasis. Lancet 385 (Suppl 1):S59. https://doi.org/10.1016/S0140-6736(15)60374-9

    Article  PubMed  Google Scholar 

  24. Mishra AK, Kadoishi T, Wang X, Driver E, Chen Z, Wang XJ, Wang JH (2016) Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors. Oncotarget 7:81341–81356. https://doi.org/10.18632/oncotarget.13228

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gambichler T, Gnielka M, Ruddel I, Stockfleth E, Stucker M, Schmitz L (2017) Expression of PD-L1 in keratoacanthoma and different stages of progression in cutaneous squamous cell carcinoma. Cancer Immunol Immunother 66:1199–1204. https://doi.org/10.1007/s00262-017-2015-x

    Article  PubMed  CAS  Google Scholar 

  26. Ayers M, Lunceford J, Nebozhyn M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127:2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jiao Q, Liu C, Li W, Li W, Fang F, Qian Q, Zhang X (2017) Programmed death-1 ligands 1 and 2 expression in cutaneous squamous cell carcinoma and their relationship with tumour-infiltrating dendritic cells. Clin Exp Immunol 188:420–429. https://doi.org/10.1111/cei.12921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Stevenson ML, Wang CQ, Abikhair M, Roudiani N, Felsen D, Krueger JG, Pavlick AC, Carucci JA (2017) Expression of programmed cell death ligand in cutaneous squamous cell carcinoma and treatment of locally advanced disease with pembrolizumab. JAMA Dermatol 153:299–303. https://doi.org/10.1001/jamadermatol.2016.5118

    Article  PubMed  Google Scholar 

  29. Linedale R, Schmidt C, King BT, Ganko AG, Simpson F, Panizza BJ, Leggatt GR (2017) Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients. PLoS One 12:e0175755. https://doi.org/10.1371/journal.pone.0175755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Mittal A, Colegio OR (2017) Skin cancers in organ transplant recipients. Am J Transplant 17:2509–2530. https://doi.org/10.1111/ajt.14382

    Article  PubMed  CAS  Google Scholar 

  31. Rosen RH, Gupta AK, Tyring SK (2012) Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: rapid lesion necrosis followed by lesion-specific immune response. J Am Acad Dermatol 66:486–493. https://doi.org/10.1016/j.jaad.2010.12.038

    Article  PubMed  CAS  Google Scholar 

  32. Walter A, Schafer M, Cecconi V et al (2013) Aldara activates TLR7-independent immune defence. Nat Commun 4:1560. https://doi.org/10.1038/ncomms2566

    Article  PubMed  CAS  Google Scholar 

  33. Speiser DE, Ho PC, Verdeil G (2016) Regulatory circuits of T cell function in cancer. Nat Rev Immunol 16:599–611. https://doi.org/10.1038/nri.2016.80

    Article  PubMed  CAS  Google Scholar 

  34. Spranger S, Spaapen RM, Zha Y, Williams J, Meng Y, Ha TT, Gajewski TF (2013) Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 5:200ra116. https://doi.org/10.1126/scitranslmed.3006504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022. https://doi.org/10.1038/ni.2703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218. https://doi.org/10.1038/ni.2762

    Article  PubMed  CAS  Google Scholar 

  38. Boussiotis VA, Chatterjee P, Li L (2014) Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J 20:265–271. https://doi.org/10.1097/PPO.0000000000000059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Weedon D (2009) Skin tumors. Weedon’s skin pathology. 3rd edn. London: Churchill Livingstone, pp 702–708. ISBN 9780702047749

    Google Scholar 

  40. Felcht M, Heck M, Weiss C et al. (2012) Expression of the T-cell regulatory marker FOXP3 in primary cutaneous large B-cell lymphoma tumour cells. Br J Dermatol 167:348–358. https://doi.org/10.1111/j.1365-2133.2012.10987.x

    Article  PubMed  CAS  Google Scholar 

  41. Slater NA, Googe PB (2016) PD-L1 expression in cutaneous squamous cell carcinoma correlates with risk of metastasis. J Cutan Pathol 43:663–670. https://doi.org/10.1111/cup.12728

    Article  PubMed  Google Scholar 

  42. Garcia-Pedrero JM, Martinez-Camblor P, Diaz-Coto S, Munguia-Calzada P, Vallina-Alvarez A, Vazquez-Lopez F, Rodrigo JP, Santos-Juanes J (2017) Tumor programmed cell death ligand 1 expression correlates with nodal metastasis in patients with cutaneous squamous cell carcinoma of the head and neck. J Am Acad Dermatol 77:527–533. https://doi.org/10.1016/j.jaad.2017.05.047

    Article  PubMed  CAS  Google Scholar 

  43. Roper E, Lum T, Palme CE, Ashford B, Ch’ng S, Ranson M, Boyer M, Clark J, Gupta R (2017) PD-L1 expression predicts longer disease free survival in high risk head and neck cutaneous squamous cell carcinoma. Pathology 49:499–505. https://doi.org/10.1016/j.pathol.2017.04.004

    Article  PubMed  CAS  Google Scholar 

  44. Awad MM, Jones RE, Liu H et al (2016) Cytotoxic T cells in PD-L1-positive malignant pleural mesotheliomas are counterbalanced by distinct immunosuppressive factors. Cancer Immunol Res 4:1038–1048. https://doi.org/10.1158/2326-6066.CIR-16-0171

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Dong P, Ren M, Song Y, Qian X, Yang Y, Li S, Zhang X, Liu F (2016) PD-L1 expression is associated with tumor FOXP3(+) regulatory T-cell infiltration of breast cancer and poor prognosis of patient. J Cancer 7:784–793. https://doi.org/10.7150/jca.14549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Thompson ED, Taube JM, Asch-Kendrick RJ et al (2017) PD-L1 expression and the immune microenvironment in primary invasive lobular carcinomas of the breast. Mod Pathol 30:1551–1560. https://doi.org/10.1038/modpathol.2017.79

    Article  PubMed  CAS  Google Scholar 

  47. Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Danilewicz M (2017) Immunohistochemical analysis of Foxp3+, CD4+, CD8 + cell infiltrates and PD-L1 in oral squamous cell carcinoma. Pathol Oncol Res doi. https://doi.org/10.1007/s12253-017-0270-y

    Article  Google Scholar 

  48. Cunningham TJ, Tabacchi M, Eliane JP et al (2017) Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. J Clin Invest 127:106–116. https://doi.org/10.1172/JCI89820

    Article  PubMed  Google Scholar 

  49. Lai C, August S, Albibas A et al (2016) OX40 + regulatory T cells in cutaneous squamous cell carcinoma suppress effector T-cell responses and associate with metastatic potential. Clin Cancer Res 22:4236–4248. https://doi.org/10.1158/1078-0432.CCR-15-2614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Crespo E, Fernandez L, Lucia M et al (2017) Effector antitumor and regulatory T cell responses influence the development of nonmelanoma skin cancer in kidney transplant patients. Transplantation 101:2102–2110. https://doi.org/10.1097/TP.0000000000001759

    Article  PubMed  CAS  Google Scholar 

  51. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118. https://doi.org/10.1038/cr.2016.151

    Article  PubMed  CAS  Google Scholar 

  52. Azzimonti B, Zavattaro E, Provasi M, Vidali M, Conca A, Catalano E, Rimondini L, Colombo E, Valente G (2015) Intense Foxp3+ CD25+ regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8+/Foxp3+ CD25+ ratio. Br J Dermatol 172:64–73. https://doi.org/10.1111/bjd.13172

    Article  PubMed  CAS  Google Scholar 

  53. Baas M, Besancon A, Goncalves T et al (2016) TGFbeta-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. Elife 5:e08133. https://doi.org/10.7554/eLife.08133

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goudie DR, D’Alessandro M, Merriman B et al (2011) Multiple self-healing squamous epithelioma is caused by a disease-specific spectrum of mutations in TGFBR1. Nat Genet 43:365–369. https://doi.org/10.1038/ng.780

    Article  PubMed  CAS  Google Scholar 

  55. Lacouture ME, Morris JC, Lawrence DP et al (2015) Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor beta by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol Immunother 64:437–446. https://doi.org/10.1007/s00262-015-1653-0

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We like to thank Dr. Damir Krunic from the Imaging Core Facility of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ, Germany) as well as Helmut Hübers for technical support with image analysis. This research was supported by the tissue bank of the NCT (Heidelberg, Germany) by staining the skin tumor samples.

Funding

This work was supported by Grants from the Deutsche Forschungsgemeinschaft (German Research Council) [Förderprojekt Nr. FE 1282/2-1 (Moritz Felcht) and GRK2099/RTG2099 “Hallmarks of Skin Cancer” (to Viktor Umansky, Jochen Utikal, Hellmut G. Augustin, Sergij Goerdt, Cyrill Géraud and Moritz Felcht)] and partially supported by the Federal Ministry for Research and Education (Bundesmininsterium für Bildung und Forschung, BMBF) (FKZ 02NUK036A to Petra Boukamp).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were done by Corinne Bauer, Ashik Ahmed Abdul Pari, Viktor Umansky, Petra Boukamp, Cyrill Géraud and Moritz Felcht. Corinne Bauer, Ashik Ahmed Abdul Pari, Cyrill Géraud and Moritz Felcht are responsible for the integrity of acquired data. Statistical analysis was performed by Corinne Bauer, Ashik Ahmed Abdul Pari, Cyrill Géraud and Moritz Felcht. Corinne Bauer, Ashik Ahmed Abdul Pari, Viktor Umansky, Petra Boukamp, Cyrill Géraud, Moritz Felcht prepared the initial manuscript. Corinne Bauer, Ashik Ahmed Abdul Pari, Viktor Umansky, Jochen Utikal, Petra Boukamp, Hellmut G. Augustin, Sergij Goerdt, Cyrill Géraud and Moritz Felcht made substantial contributions to data analysis and interpretation of results, rewriting of the manuscript, review and approval.

Corresponding author

Correspondence to Moritz Felcht.

Ethics declarations

Conflict of interest

Moritz Felcht received travel and congress participation funding by TEVA company, honoraria as an advisory board member of AbbVie Ltd. and lecture fees by Periderm GmbH and Mibe Vertrieb GmbH. All other authors declare no conflict of interest.

Ethical standards

The study was performed with archived paraffin-embedded tissue samples. The study was approved by the ethical committee II of Heidelberg University (2014-835R-MA).

Informed consent

Informed consent by individual patients cannot be given, as the study only included paraffin-embedded archived tissue. With the approval of the ethical committee informed consent was not required as all patient data were anonymized.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1455 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, C., Abdul Pari, A.A., Umansky, V. et al. T-lymphocyte profiles differ between keratoacanthomas and invasive squamous cell carcinomas of the human skin. Cancer Immunol Immunother 67, 1147–1157 (2018). https://doi.org/10.1007/s00262-018-2171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2171-7

Keywords

Navigation