Skip to main content

Advertisement

Log in

Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Relapsed/refractory B-precursor acute lymphoblastic leukemia (pre-B ALL) remains a major therapeutic challenge. Chimeric antigen receptor (CAR) T cells are promising treatment options. Central memory T cells (Tcm) and stem cell-like memory T cells (Tscm) are known to promote sustained proliferation and persistence after T-cell therapy, constituting essential preconditions for treatment efficacy. Therefore, we set up a protocol for anti-CD19 CAR T-cell generation aiming at high Tcm/Tscm numbers. 100 ml peripheral blood from pediatric pre-B ALL patients was processed including CD4+/CD8+-separation, T-cell activation with modified anti-CD3/-CD28 reagents and transduction with a 4-1BB-based second generation CAR lentiviral vector. The process was performed on a closed, automated device requiring additional manual/open steps under clean room conditions. The clinical situation of these critically ill and refractory patients with leukemia leads to inconsistent cellular compositions at start of the procedure including high blast counts and low T-cell numbers with exhausted phenotype. Nevertheless, a robust T-cell product was achieved (mean CD4+ = 50%, CD8+ = 39%, transduction = 27%, Tcm = 50%, Tscm = 46%). Strong proliferative potential (up to > 100-fold), specific cytotoxicity and low expression of co-inhibitory molecules were documented. CAR T cells significantly released TH1 cytokines IFN-γ, TNF-α and IL-2 upon target-recognition. In conclusion, partly automated GMP-generation of CAR T cells from critically small blood samples was feasible with a new stimulation protocol that leads to high functionality and expansion potential, balanced CD4/CD8 ratios and a conversion to a Tcm/Tscm phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

6-MP:

6-Mercaptopurine

6-TG:

6-Thioguanine

ARA-C:

Cytarabine

B-NHL:

B-cell non-Hodgkin’s lymphoma

cALL:

Common acute lymphoblastic leukemia

CNS:

Central nervous system

DNR:

Daunorubicin

FMO:

Fluorescence minus one

HIDAC:

High-dose cytarabine

HSA:

Human serum albumin

MOI:

Multiplicity of infection

MTX:

Methotrexate

PB:

Peripheral blood

PEG-ASP:

Pegylated asparaginase

Pre-B ALL:

B-precursor acute lymphoblastic leukemia

Tcm:

Central memory T cells

TCT:

T-cell transduction

Teff:

Effector T cells

Tem:

Effector memory T cells

Tscm:

Stem cell-like memory T cells

VCN:

Vector copy number

VCR:

Vincristine

VP16:

Etoposide

References

  1. Blaeschke F, Kaeuferle T, Feucht J, Weber D, Lotfi R, Kaiser A, Assenmacher M, Doering M, Feuchtinger T (2016) Defined central memory and stem memory T cell phenotype of CD4 and CD8 CAR T cells for the treatment of CD19+ acute lymphoblastic leukemia in an automated closed system. In: 58th ASH annual meeting and exposition. Blood, 128(22) (Abstract 4558)

  2. Stenger D, Blaeschke F, Kaeuferle T, Willier S, Lotfi R, Kaiser A, Assenmacher M, Doering M, Feucht J, Feuchtinger T (2017) Automated generation of central memory and stem cell-like memory CD19-specific CAR T cells in a closed, GMP compatible system. In: Cellular therapy, international symposium Erlangen, Erlangen (Abstract 134)

  3. Blaeschke F, Stenger D, Kaeuferle T, Willier S, Lotfi R, Kaiser A, Assenmacher M, Doering M, Feucht J, Feuchtinger T (2017) CD19-specific CAR T cells with a central memory and stem memory phenotype—automated generation in a closed, GMP-compatible system from peripheral blood of pediatric patients with acute lymphoblastic leukemia. In: 43rd annual meeting of the European Society for Blood and Marrow Transplantation (EBMT), Marseille (Abstract)

  4. Blaeschke F, Stenger D, Kaeuferle T, Willier S, Lotfi R, Kaiser A, Assenmacher M, Doering M, Feucht J, Feuchtinger T (2017) Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated GMP system for the treatment of CD19+ acute lymphoblastic leukemia. In: Annual meeting of Paediatrische Arbeitsgemeinschaft fuer Stammzelltransplantation and Zelltherapie (PAS&ZT), Hamburg (Abstract)

  5. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528. https://doi.org/10.1016/S0140-6736(14)61403-3

    Article  PubMed  CAS  Google Scholar 

  6. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M, Feldman S, Lu L, Li YF, Ngo LT, Goy A, Feldman T, Spaner DE, Wang ML, Chen CC, Kranick SM, Nath A, Nathan DA, Morton KE, Toomey MA, Rosenberg SA (2015) Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 33(6):540–549. https://doi.org/10.1200/JCO.2014.56.2025

    Article  PubMed  CAS  Google Scholar 

  8. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733. https://doi.org/10.1056/NEJMoa1103849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Orlowski RJ, Porter DL, Frey NV (2017) The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol 177(1):13–26. https://doi.org/10.1111/bjh.14475

    Article  PubMed  Google Scholar 

  10. Maude S, Barrett DM (2016) Current status of chimeric antigen receptor therapy for haematological malignancies. Br J Haematol 172(1):11–22. https://doi.org/10.1111/bjh.13792

    Article  PubMed  CAS  Google Scholar 

  11. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398. https://doi.org/10.1158/2159-8290.CD-12-0548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, Sussman R, Lanauze C, Ruella M, Gazzara MR, Martinez NM, Harrington CT, Chung EY, Perazzelli J, Hofmann TJ, Maude SL, Raman P, Barrera A, Gill S, Lacey SF, Melenhorst JJ, Allman D, Jacoby E, Fry T, Mackall C, Barash Y, Lynch KW, Maris JM, Grupp SA, Thomas-Tikhonenko A (2015) Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5(12):1282–1295. https://doi.org/10.1158/2159-8290.CD-15-1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Jacoby E, Nguyen SM, Fountaine TJ, Welp K, Gryder B, Qin H, Yang Y, Chien CD, Seif AE, Lei H, Song YK, Khan J, Lee DW, Mackall CL, Gardner RA, Jensen MC, Shern JF, Fry TJ (2016) CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun 7:12320. https://doi.org/10.1038/ncomms12320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR, Norris AP, Wong CW, Urak RZ, Chang WC, Khaled SK, Siddiqi T, Budde LE, Xu J, Chang B, Gidwaney N, Thomas SH, Cooper LJ, Riddell SR, Brown CE, Jensen MC, Forman SJ (2016) Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127(24):2980–2990. https://doi.org/10.1182/blood-2015-12-686725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, Almeida JR, Gostick E, Yu Z, Carpenito C, Wang E, Douek DC, Price DA, June CH, Marincola FM, Roederer M, Restifo NP (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297. https://doi.org/10.1038/nm.2446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Biasco L, Scala S, Basso Ricci L, Dionisio F, Baricordi C, Calabria A, Giannelli S, Cieri N, Barzaghi F, Pajno R, Al-Mousa H, Scarselli A, Cancrini C, Bordignon C, Roncarolo MG, Montini E, Bonini C, Aiuti A (2015) In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Sci Transl Med 7(273):273ra213. https://doi.org/10.1126/scitranslmed.3010314

    Article  CAS  Google Scholar 

  17. Feucht J, Kayser S, Gorodezki D, Hamieh M, Doring M, Blaeschke F, Schlegel P, Bosmuller H, Quintanilla-Fend L, Ebinger M, Lang P, Handgretinger R, Feuchtinger T (2016) T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget 7(47):76902–76919. https://doi.org/10.18632/oncotarget.12357

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS (2016) Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Investig 126(8):3130–3144. https://doi.org/10.1172/JCI83092

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hollyman D, Stefanski J, Przybylowski M, Bartido S, Borquez-Ojeda O, Taylor C, Yeh R, Capacio V, Olszewska M, Hosey J, Sadelain M, Brentjens RJ, Riviere I (2009) Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 32(2):169–180. https://doi.org/10.1097/CJI.0b013e318194a6e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mock U, Nickolay L, Philip B, Cheung GW, Zhan H, Johnston IC, Kaiser AD, Peggs K, Pule M, Thrasher AJ, Qasim W (2016) Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy 18(8):1002–1011. https://doi.org/10.1016/j.jcyt.2016.05.009

    Article  PubMed  CAS  Google Scholar 

  21. Schneider D, Xiong Y, Wu D, Nlle V, Schmitz S, Haso W, Kaiser A, Dropulic B, Orentas RJ (2017) A tandem CD19/CD20 CAR lentiviral vector drives on-target and off-target antigen modulation in leukemia cell lines. J Immunother Cancer 5:42. https://doi.org/10.1186/s40425-017-0246-1

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V, Lindgren C, Oron AP, Li D, Riddell SR, Park JR, Jensen MC (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129(25):3322–3331. https://doi.org/10.1182/blood-2017-02-769208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lock D, Mockel-Tenbrinck N, Drechsel K, Barth C, Mauer D, Schaser T, Kolbe C, Al Rawashdeh W, Brauner J, Hardt O, Pflug N, Holtick U, Borchmann P, Assenmacher M, Kaiser A (2017) Automated manufacturing of potent CD20-directed chimeric antigen receptor T cells for clinical use. Hum Gene Ther 28(10):914–925. https://doi.org/10.1089/hum.2017.111

    Article  PubMed  CAS  Google Scholar 

  24. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, Doglioni C, Di Serio C, von Kalle C, Naldini L (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Investig 119(4):964–975. https://doi.org/10.1172/JCI37630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, Robinson E, Steevens NN, Chaney C, Soma L, Chen X, Yeung C, Wood B, Li D, Cao J, Heimfeld S, Jensen MC, Riddell SR, Maloney DG (2016) CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Investig 126(6):2123–2138. https://doi.org/10.1172/JCI85309

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barrett DM, Singh N, Hofmann TJ, Gershenson Z, Grupp SA (2016) Interleukin 6 is not made by chimeric antigen receptor T cells and does not impact their function. In: 58th ASH annual meeting and exposition. Blood, 128(22) (Abstract 654)

Download references

Acknowledgements

The authors thank all patients and their parents for participating in the study. Nadine Stoll, Tanja Weisser, Nicola Habjan, Florian Jurgeleit, Carola Barth and Daniela Mauer are acknowledged for excellent technical assistance. The authors thank Katharina Drechsel and Nadine Mockel-Tenbrinck for helpful advice.

Funding

This work was supported by Elterninitiative Ebersberg, Elterninitative Intern3 and Bettina Braeu Stiftung, Adler Stiftung and the Care for Rare Foundation. Miltenyi Biotec provided reagents free of charge.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by TF, FB and ADK; the automated process was developed by ADK and MA; patient samples were provided by TF, SW and MD; experiments were performed by FB, DS and TK; JF set up experiments and provided protocols; RL provided healthy donor starting fractions and human serum. Data analysis was done by FB, DS and TF; the manuscript was written by FB and TF and was reviewed by all co-authors.

Corresponding author

Correspondence to Tobias Feuchtinger.

Ethics declarations

Conflict of interest

Andrew Didier Kaiser and Mario Assenmacher are employees of Miltenyi Biotec. This work has been performed as a collaboration between Tobias Feuchtinger, Franziska Blaeschke and Miltenyi Biotec. Miltenyi Biotec provided reagent free of charge. All other authors declare that they have no conflict of interest.

Ethical approval and ethical standards

This study was approved by the Institutional Ethical Review Board (“Ethikkommission bei der LMU München”), approval number 435 − 15, and was performed in accordance with the Declaration of Helsinki.

Informed consent

Patients/their representatives gave written informed consent according to the guidelines and approval of the Institutional Ethical Review Board.

Cell line authentication

Cell lines Raji, Jeko, Molm-13, U-266 were routinely tested for identity by short-tandem repeat analyses (DSMZ, Braunschweig, Germany).

Additional information

Poster presentation at 58th ASH Annual Meeting and Exposition (American Society of Hematology), December 3–6 2016, San Diego, USA [1].

Poster presentation at Cellular Therapy, International Symposium Erlangen, March 16–17 2017, Erlangen, Germany [2].

Oral presentation at 43rd Annual Meeting of the European Society for Blood and Marrow Transplantation (EBMT), March 26–29 2017, Marseille, France [3].

Oral presentation at Annual Meeting of Paediatrische Arbeitsgemeinschaft für Stammzelltransplantation and Zelltherapie (PAS&ZT), September 14–15 2017, Hamburg, Germany [4].

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 491 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaeschke, F., Stenger, D., Kaeuferle, T. et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunol Immunother 67, 1053–1066 (2018). https://doi.org/10.1007/s00262-018-2155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2155-7

Keywords

Navigation