Skip to main content

Advertisement

Log in

Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) is the leading cause of gynecological cancer-related death in North America. Most ovarian cancer patients (OCPs) experience disease recurrence after first-line surgery and chemotherapy; thus, there is a need for novel second-line treatments to improve the prognosis of OC. Although peripheral blood-derived NK cells are known for their ability to spontaneously lyse tumour cells without prior sensitization, ascites-derived NK cells (ascites-NK cells) isolated from OCPs exhibit inhibitory phenotypes, impaired cytotoxicity and may play a pro-tumourigenic role in cancer progression. Therefore, it is of interest to improve the cytotoxic effector function of impaired OCP ascites-NK cells at the tumour environment. We investigated the efficacy of using an artificial APC-based ex vivo expansion technique to generate cytotoxic, expanded NK cells from previously impaired OCP ascites-NK cells, for use in an autologous model of NK cell immunotherapy. We are the first to obtain a log-scale expansion of OCP ascites-NK cells that upregulate the surface expression of activating receptors NKG2D, NKp30, NKp44, produce robust amounts of anti-tumour cytokines in the presence of OC cells and mediate direct tumour cytotoxicity against ascites-derived, primary OC cells obtained from autologous patients. Our findings demonstrate that it is possible to generate cytotoxic OCP ascites-NK cells from previously impaired OCP ascites-NK cells, which presents a promising immunotherapeutic target for the second-line treatment of OC. Future work should focus on evaluating the in vivo efficacy of autologous NK cell immunotherapy through the intraperitoneal delivery of NK cell expansion factors to a preclinical xenograft mouse model of human OC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

aAPC:

Artificial antigen-presenting cell

CFSE:

Carboxyfluorescein succinimidyl ester

E:T:

Effector: target

HD:

Healthy donor

IFN-γ:

Interferon-γ

IL:

Interleukin

NK cells:

Natural killer cells

OC:

Ovarian cancer

OCP:

Ovarian cancer patient

OCP ascites-NK cells:

NK cells derived from ovarian cancer patient ascites

PB:

Peripheral blood

PB-NK cells:

NK cells derived from peripheral blood

TNF-α:

Tumor necrosis factor-α

VEGF:

Vascular endothelial growth factor

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Statistics CCSsACoC (2016) Canadian Cancer Statistics 2016. Government of Canada. http://www.cancer.ca/~/media/cancer.ca/CW/cancerinformation/cancer 101/Canadian cancer statistics/Canadian-Cancer-Statistics-2016-EN.pdf?la = en. Accessed 26 Nov 2016

  3. Grisham RN, Berek J, Pfisterer J, Sabbatini P (2011) Abagovomab: an anti-idiotypic CA-125 targeted immunotherapeutic agent for ovarian cancer. Immunotherapy 3(2):153–162. https://doi.org/10.2217/imt.10.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Markman M, Markman J, Webster K, Zanotti K, Kulp B, Peterson G, Belinson J (2004) Duration of response to second-line, platinum-based chemotherapy for ovarian cancer: implications for patient management and clinical trial design. J Clin Oncol 22(15):3120–3125. https://doi.org/10.1200/JCO.2004.05.195

    Article  CAS  PubMed  Google Scholar 

  5. Armstrong DK, Bundy B, Wenzel L, Huang HQ, Baergen R, Lele S, Copeland LJ, Walker JL, Burger RA, Gynecologic Oncology G (2006) Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med 354(1):34–43. https://doi.org/10.1056/NEJMoa052985

    Article  CAS  PubMed  Google Scholar 

  6. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM, Baergen R, Gynecologic Oncology G (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21(17):3194–3200. https://doi.org/10.1200/JCO.2003.02.153

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed N, Stenvers KL (2013) Getting to know ovarian cancer ascites: opportunities for targeted therapy-based translational research. Front Oncol 3:256. https://doi.org/10.3389/fonc.2013.00256

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kipps E, Tan DS, Kaye SB (2013) Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13(4):273–282. https://doi.org/10.1038/nrc3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ayantunde AA, Parsons SL (2007) Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann Oncol 18(5):945–949. https://doi.org/10.1093/annonc/mdl499

    Article  CAS  PubMed  Google Scholar 

  10. Cheng M, Chen Y, Xiao W, Sun R, Tian Z (2013) NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 10(3):230–252. https://doi.org/10.1038/cmi.2013.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12(4):239–252. https://doi.org/10.1038/nri3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A, Curtsinger J, McKenna D, Dusenbery K, Bliss R, Downs LS, Miller JS (2011) A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 13(1):98–107. https://doi.org/10.3109/14653249.2010.515582

    Article  CAS  PubMed  Google Scholar 

  13. Geller MA, Knorr DA, Hermanson DA, Pribyl L, Bendzick L, McCullar V, Miller JS, Kaufman DS (2013) Intraperitoneal delivery of human natural killer cells for treatment of ovarian cancer in a mouse xenograft model. Cytotherapy 15(10):1297–1306. https://doi.org/10.1016/j.jcyt.2013.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hermanson DL, Bendzick L, Pribyl L, McCullar V, Vogel RI, Miller JS, Geller MA, Kaufman DS (2016) Induced pluripotent stem cell-derived natural killer cells for treatment of ovarian cancer. Stem Cells 34(1):93–101. https://doi.org/10.1002/stem.2230

    Article  CAS  PubMed  Google Scholar 

  15. Coca S, Perez-Piqueras J, Martinez D, Colmenarejo A, Saez MA, Vallejo C, Martos JA, Moreno M (1997) The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79(12):2320–2328

    Article  CAS  PubMed  Google Scholar 

  16. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S, Aikou T (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88(3):577–583

    Article  CAS  PubMed  Google Scholar 

  17. Villegas FR, Coca S, Villarrubia VG, Jimenez R, Chillon MJ, Jareno J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35(1):23–28

    Article  PubMed  Google Scholar 

  18. Dong HP, Elstrand MB, Holth A, Silins I, Berner A, Trope CG, Davidson B, Risberg B (2006) NK- and B-cell infiltration correlates with worse outcome in metastatic ovarian carcinoma. Am J Clin Pathol 125(3):451–458

    Article  PubMed  Google Scholar 

  19. Lutgendorf SK, Sood AK, Anderson B, McGinn S, Maiseri H, Dao M, Sorosky JI, De Geest K, Ritchie J, Lubaroff DM (2005) Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol 23(28):7105–7113. https://doi.org/10.1200/JCO.2005.10.015

    Article  PubMed  Google Scholar 

  20. Lai P, Rabinowich H, Crowley-Nowick PA, Bell MC, Mantovani G, Whiteside TL (1997) Alterations in expression and function of signal transducing proteins in tumor-associated T and natural killer cells in ovarian carcinoma. Biochem Soc Trans 25(2):218S

    Article  CAS  PubMed  Google Scholar 

  21. Belisle JA, Gubbels JA, Raphael CA, Migneault M, Rancourt C, Connor JP, Patankar MS (2007) Peritoneal natural killer cells from epithelial ovarian cancer patients show an altered phenotype and bind to the tumour marker MUC16 (CA125). Immunology 122(3):418–429. https://doi.org/10.1111/j.1365-2567.2007.02660.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beziat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J, Combadiere B, Debre P, Vieillard V (2011) CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. J Immunol 186(12):6753–6761. https://doi.org/10.4049/jimmunol.1100330

    Article  CAS  PubMed  Google Scholar 

  23. Carlsten M, Norell H, Bryceson YT, Poschke I, Schedvins K, Ljunggren HG, Kiessling R, Malmberg KJ (2009) Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J Immunol 183(8):4921–4930. https://doi.org/10.4049/jimmunol.0901226

    Article  CAS  PubMed  Google Scholar 

  24. Pesce S, Tabellini G, Cantoni C, Patrizi O, Coltrini D, Rampinelli F, Matta J, Vivier E, Moretta A, Parolini S, Marcenaro E (2015) B7-H6-mediated downregulation of NKp30 in NK cells contributes to ovarian carcinoma immune escape. Oncoimmunology 4(4):e1001224. https://doi.org/10.1080/2162402X.2014.1001224

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tabellini G, Benassi M, Marcenaro E, Coltrini D, Patrizi O, Ricotta D, Rampinelli F, Moretta A, Parolini S (2014) Primitive neuroectodermal tumor in an ovarian cystic teratoma: natural killer and neuroblastoma cell analysis. Case Rep Oncol 7(1):70–78. https://doi.org/10.1159/000357802

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lukesova S, Vroblova V, Tosner J, Kopecky J, Sedlakova I, Cermakova E, Vokurkova D, Kopecky O (2015) Comparative study of various subpopulations of cytotoxic cells in blood and ascites from patients with ovarian carcinoma. Contemp Oncol (Pozn) 19(4):290–299. https://doi.org/10.5114/wo.2015.54388

    Google Scholar 

  27. Le Bouteiller P, Tabiasco J (2006) Killers become builders during pregnancy. Nat Med 12(9):991–992. https://doi.org/10.1038/nm0906-991

    Article  PubMed  Google Scholar 

  28. Bruno A, Ferlazzo G, Albini A, Noonan DM (2014) A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst 106(8):dju200. https://doi.org/10.1093/jnci/dju200

    Article  PubMed  PubMed Central  Google Scholar 

  29. Noonan DM, De Lerma Barbaro A, Vannini N, Mortara L, Albini A (2008) Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 27(1):31–40. https://doi.org/10.1007/s10555-007-9108-5

    Article  PubMed  Google Scholar 

  30. Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJ, Lee DA (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264. https://doi.org/10.1371/journal.pone.0030264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shah N, Martin-Antonio B, Yang H, Ku S, Lee DA, Cooper LJ, Decker WK, Li S, Robinson SN, Sekine T, Parmar S, Gribben J, Wang M, Rezvani K, Yvon E, Najjar A, Burks J, Kaur I, Champlin RE, Bollard CM, Shpall EJ (2013) Antigen presenting cell-mediated expansion of human umbilical cord blood yields log-scale expansion of natural killer cells with anti-myeloma activity. PLoS One 8(10):e76781. https://doi.org/10.1371/journal.pone.0076781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oyer JL, Igarashi RY, Kulikowski AR, Colosimo DA, Solh MM, Zakari A, Khaled YA, Altomare DA, Copik AJ (2015) Generation of highly cytotoxic natural killer cells for treatment of acute myelogenous leukemia using a feeder-free, particle-based approach. Biol Blood Marrow Transplant 21(4):632–639. https://doi.org/10.1016/j.bbmt.2014.12.037

    Article  CAS  PubMed  Google Scholar 

  33. Somanchi SS, Senyukov VV, Denman CJ, Lee DA (2011) Expansion, purification, and functional assessment of human peripheral blood NK cells. J Vis Exp. https://doi.org/10.3791/2540

    PubMed  PubMed Central  Google Scholar 

  34. Spanholtz J, Preijers F, Tordoir M, Trilsbeek C, Paardekooper J, de Witte T, Schaap N, Dolstra H (2011) Clinical-grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One 6(6):e20740. https://doi.org/10.1371/journal.pone.0020740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, Moretta L, Moretta A, Marcenaro E (2017) Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 139(1):335–346 e333. https://doi.org/10.1016/j.jaci.2016.04.025

    Article  CAS  PubMed  Google Scholar 

  36. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823. https://doi.org/10.1038/nrc1951

    Article  CAS  PubMed  Google Scholar 

  37. Konstantinopoulos PA, Matulonis UA (2013) Current status and evolution of preclinical drug development models of epithelial ovarian cancer. Front Oncol 3:296. https://doi.org/10.3389/fonc.2013.00296

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gubbels JA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H, Petrie S, Migneault M, Rancourt C, Connor JP, Patankar MS (2010) MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer 9:11. https://doi.org/10.1186/1476-4598-9-11

    Article  PubMed  PubMed Central  Google Scholar 

  39. Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U, Reinartz S, Muller R (2017) The unique molecular and cellular microenvironment of ovarian cancer. Front Oncol 7:24. https://doi.org/10.3389/fonc.2017.00024

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kulbe H, Chakravarty P, Leinster DA, Charles KA, Kwong J, Thompson RG, Coward JI, Schioppa T, Robinson SC, Gallagher WM, Galletta L, Australian Ovarian Cancer Study G, Salako MA, Smyth JF, Hagemann T, Brennan DJ, Bowtell DD, Balkwill FR (2012) A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 72(1):66–75. https://doi.org/10.1158/0008-5472.CAN-11-2178

    Article  CAS  PubMed  Google Scholar 

  41. Clausen J, Vergeiner B, Enk M, Petzer AL, Gastl G, Gunsilius E (2003) Functional significance of the activation-associated receptors CD25 and CD69 on human NK-cells and NK-like T-cells. Immunobiology 207(2):85–93. https://doi.org/10.1078/0171-2985-00219

    Article  CAS  PubMed  Google Scholar 

  42. Rezvani K, Rouce RH (2015) The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol 6:578. https://doi.org/10.3389/fimmu.2015.00578

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313(23):1485–1492. https://doi.org/10.1056/NEJM198512053132327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Karen Mossman for providing us with the OVCAR-8 cell line. We also thank Jann Ang and Natasha Kazhdan for aiding us in sample collection.

Funding

Funding for this research was supported by grants from the Juravinski Hospital and Cancer Centre Foundation, the Canadian Breast Cancer Foundation and the Canadian Institutes of Health Research Tier 1 Canada Research Chair awarded to Dr. Ali A. Ashkar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Ashkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Cell line authentication

The OVCAR-8 cell line was verified using the American Type Culture Collection® (ATCC®) Cell Line Authentication Service for which we received a Short Tandem Repeat Profile Report on September 5, 2017. The submitted OVCAR-8 sample is an exact match to the short tandem repeat profile for the cell line OVCAR-8 listed on the Expasy website: http://web.expasy.org/cellosaurus/CVCL_1629.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 332 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nham, T., Poznanski, S.M., Fan, I.Y. et al. Ex vivo-expanded NK cells from blood and ascites of ovarian cancer patients are cytotoxic against autologous primary ovarian cancer cells. Cancer Immunol Immunother 67, 575–587 (2018). https://doi.org/10.1007/s00262-017-2112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2112-x

Keywords

Navigation