Skip to main content

Advertisement

Log in

Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

The NK-92/5.28.z cell line (also referred to as HER2.taNK) represents a stable, lentiviral-transduced clone of ErbB2 (HER2)-specific, second-generation CAR-expressing derivative of clinically applicable NK-92 cells. This study addresses manufacturing-related issues and aimed to develop a GMP-compliant protocol for the generation of NK-92/5.28.z therapeutic doses starting from a well-characterized GMP-compliant master cell bank.

Materials and methods

Commercially available GMP-grade culture media and supplements (fresh frozen plasma, platelet lysate) were evaluated for their ability to support expansion of NK-92/5.28.z. Irradiation sensitivity and cytokine release were also investigated.

Results

NK-92/5.28.z cells can be grown to clinically applicable cell doses of 5 × 108 cells/L in a 5-day batch culture without loss of viability and potency. X-Vivo 10 containing recombinant transferrin supplemented with 5% FFP and 500 IU/mL IL-2 in VueLife 750-C1 bags showed the best results. Platelet lysate was less suited to support NK-92/5.28.z proliferation. Irradiation with 10 Gy completely abrogated NK-92/5.28.z proliferation and preserved viability and potency for at least 24 h. NK-92/5.28.z showed higher baseline cytokine release compared to NK-92, which was significantly increased upon encountering ErbB2(+) targets [GZMB (twofold), IFN-γ (fourfold), IL-8 (24-fold) and IL-10 (fivefold)]. IL-6 was not released by NK cells, but was observed in some stimulated targets. Irradiation resulted in upregulation of IL-8 and downregulation of sFasL, while other cytokines were not impacted.

Conclusion

Our concept suggests NK-92/5.28.z maintenance culture from which therapeutic doses up to 5 × 109 cells can be expanded in 10 L within 5 days. This established process is feasible to analyze NK-92/5.28.z in phase I/II trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

CRS:

Cytokine release syndrome

EGFRvIII:

Epidermal growth factor receptor variant III

EPCAM:

Epithelial cell adhesion molecule

Eu:

Europium

FDA:

Food and Drug Administration

FFP:

Fresh frozen plasma

GBM:

Glioblastoma

GD2:

Disialoganglioside

GZMB:

Granzyme B

HI:

Heat inactivated

hPL:

Human platelet lysate

HSA:

Human serum albumin

IMP:

Investigational medicinal product

NCR:

Natural cytotoxicity receptors

r:

Recombinant

SCGM:

Stem cell growth medium

TF:

Transferrin

TRF:

Time-resolved fluorometry

References

  1. Tonn T, Becker S, Esser R, Schwabe D, Seifried E (2001) Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92. J Hematother Stem Cell Res 10(4):535–544. doi:10.1089/15258160152509145

    Article  CAS  PubMed  Google Scholar 

  2. Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H (2008) Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma: a phase I trial. Cytotherapy 10:625–632. doi:10.1080/14653240802301872

    Article  CAS  PubMed  Google Scholar 

  3. Tonn T, Schwabe D, Klingemann HG, Becker S, Esser R, Koehl U et al (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15:1563–1570. doi:10.1016/j.jcyt.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  4. Esser R, Muller T, Stefes D, Kloess S, Seidel D, Gillies SD et al (2012) NK cells engineered to express a GD2 -specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cell Mol Med 16:569–581. doi:10.1111/j.1582-4934.2011.01343.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Genssler S, Burger MC, Zhang C, Oelsner S, Mildenberger I, Wagner M et al (2016) Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival. Oncoimmunology 5:e1119354. doi:10.1080/2162402X.2015.1119354

    Article  PubMed  Google Scholar 

  6. Muller T, Uherek C, Maki G, Chow KU, Schimpf A, Klingemann HG et al (2008) Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol Immunother 57:411–423. doi:10.1007/s00262-007-0383-3

    Article  PubMed  Google Scholar 

  7. Romanski A, Uherek C, Bug G, Seifried E, Klingemann H, Wels WS et al (2016) CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies. J Cell Mol Med 20:1287–1294. doi:10.1111/jcmm.12810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG et al (2002) Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100:1265–1273

    CAS  PubMed  Google Scholar 

  9. Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S (2008) Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet 102:128–131. doi:10.1016/j.ijgo.2008.04.008

    Article  CAS  PubMed  Google Scholar 

  10. Schonfeld K, Sahm C, Zhang C, Naundorf S, Brendel C, Odendahl M et al (2015) Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol Ther 23:330–338. doi:10.1038/mt.2014.219

    Article  PubMed  Google Scholar 

  11. Zhang C, Burger MC, Jennewein L, Genßler S, Schönfeld K, Zeiner P et al (2016) ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. doi:10.1093/jnci/djv375

    Google Scholar 

  12. Lapteva N, Durett AG, Sun J, Rollins LA, Huye LL, Fang J, Dandekar V, Mei Z, Jackson K, Vera J, Ando J, Ngo MC, Coustan-Smith E, Campana D, Szmania S, Garg T, Moreno-Bost A, Vanrhee F, Gee AP, Rooney CM (2012) Large-scale ex vivo expansion and characterization of natural killer cells for clinical applications. Cytotherapy 14:1131–1143. doi:10.3109/14653249.2012.700767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tam YK, Martinson JA, Doligosa K, Klingemann HG (2003) Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5:259–272. doi:10.1080/14653240310001523

    Article  CAS  PubMed  Google Scholar 

  14. June CH, Maus MV, Plesa G, Johnson LA, Zhao Y, Levine BL, Grupp SA, Porter DL (2014) Engineered T cells for cancer therapy. Cancer Immunol Immunother 63:969–975. doi:10.1007/s00262-014-1568-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laskey J, Webb I, Schulman HM, Ponka P (1988) Evidence that transferrin supports cell proliferation by supplying iron for DNA synthesis. Exp Cell Res 176:87–95

    Article  CAS  PubMed  Google Scholar 

  16. Zhang D, Nandi S, Bryan P, Pettit S, Nguyen D, Santos MA, Huang N (2010) Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr Purif 74:69–79. doi:10.1016/j.pep.2010.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8:652–658

    CAS  PubMed  Google Scholar 

  18. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S et al (2000) IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol 165:1307–1313. doi:10.4049/jimmunol.165.3.1307

    Article  CAS  PubMed  Google Scholar 

  19. Pasi F, Facoetti A, Nano R (2010) IL-8 and IL-6 bystander signalling in human glioblastoma cells exposed to gamma radiation. Anticancer Res 30:2769–2772

    CAS  PubMed  Google Scholar 

  20. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124:188–195. doi:10.1182/blood-2014-05-552729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528. doi:10.1016/S0140-6736(14)61403-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the German Federal Ministry of Education and Research (BMBF) (Cluster für individualisierte Immunintervention, Ci3; FKZ 131A009A, 131A009B, 131A009C) and the LOEWE Center for Cell and Gene Therapy Frankfurt (CGT). The LOEWE Center for Cell and Gene Therapy Frankfurt is funded by Hessisches Ministerium für Wissenschaft und Kunst, reference number: III L 5–518/17.004 (2013). We thank Barry J. Simon, Nantkwest Inc., for providing NK-92 cells from Nantkwest´s proprietary master cell bank. We thank Andrea Jochheim Richter, Kurt Schoenfeld and Hans Klingemann for helpful discussions and suggestions throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Tonn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowakowska, P., Romanski, A., Miller, N. et al. Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunol Immunother 67, 25–38 (2018). https://doi.org/10.1007/s00262-017-2055-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2055-2

Keywords

Navigation