Skip to main content

Advertisement

Log in

Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Trastuzumab is the first-line drug to treat breast cancer with high Her2 expression. However, many cancers failed to respond, largely due to their resistance to NK cell-triggered antibody-dependent cellular cytotoxicity (ADCC). Poliovirus receptor (PVR)-like molecules are known to be important for lymphocyte functions. We found that all PVR-like receptors are expressed on human NK cells, and only TIGIT is preferentially expressed on the CD16+ NK cell subset. Disrupting the interactions of PVR-like receptors with their ligands on cancer cells regulates NK cell activity. More importantly, TIGIT is upregulated upon NK cell activation via ADCC. Blockade of TIGIT or CD112R, separately or together, enhances trastuzumab-triggered antitumor response by human NK cells. Thus, our findings suggest that PVR-like receptors regulate NK cell functions and can be targeted for improving trastuzumab therapy for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADCC:

antibody-dependent cellular cytotoxicity

APC:

allophycocyanin

CFSE:

carboxyfluorescein diacetate succinimidyl ester

IgSF:

immunoglobulin superfamily

LEAF:

low endotoxin, azide-free

MDA:

MDA-MB-453

NKG2D:

Natural Killer Group 2D

NKp30:

NK p30 receptor

NKp46:

NK p46 receptor

PBMCs:

peripheral blood mononuclear cells

PI:

propidium iodide

PVR:

poliovirus receptor

SEM:

standard error of measurement

TIGIT:

T cell Ig and ITIM domain

References

  1. Sjogren S, Inganas M, Lindgren A, Holmberg L, Bergh J (1998) Prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J Clin Oncol 16(2):462–469. doi:10.1200/jco.1998.16.2.462

    Article  CAS  PubMed  Google Scholar 

  2. Andrulis IL, Bull SB, Blackstein ME et al (1998) Neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol 16(4):1340–1349. doi:10.1200/jco.1998.16.4.1340

    Article  CAS  PubMed  Google Scholar 

  3. Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  CAS  PubMed  Google Scholar 

  4. Madarnas Y, Trudeau M, Franek JA, McCready D, Pritchard KI, Messersmith H (2008) Adjuvant/neoadjuvant trastuzumab therapy in women with HER-2/neu-overexpressing breast cancer: a systematic review. Cancer Treat Rev 34(6):539–557. doi:10.1016/j.ctrv.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  5. Rimawi MF, Schiff R, Osborne CK (2015) Targeting HER2 for the treatment of breast cancer. Annu Rev Med 66:111–128. doi:10.1146/annurev-med-042513-015127

    Article  CAS  PubMed  Google Scholar 

  6. Kohrt HE, Houot R, Weiskopf K, Goldstein MJ, Scheeren F, Czerwinski D, Colevas AD, Weng WK, Clarke MF, Carlson RW, Stockdale FE, Mollick JA, Chen L, Levy R (2012) Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest 122(3):1066–1075. doi:10.1172/jci61226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petricevic B, Laengle J, Singer J, Sachet M, Fazekas J, Steger G, Bartsch R, Jensen-Jarolim E, Bergmann M (2013) Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients. J Transl Med 11:307. doi:10.1186/1479-5876-11-307

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hall PS, Cameron DA (2009) Current perspective—trastuzumab. Eur J Cancer 45(1):12–18. doi:10.1016/j.ejca.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  9. Clynes RA, Towers TL, Presta LG, Ravetch JV (2000) Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6(4):443–446. doi:10.1038/74704

    Article  CAS  PubMed  Google Scholar 

  10. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469. doi:10.1182/blood-2007-09-077438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan CJ, Andrews DM, Smyth MJ (2012) Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr Opin Immunol 24(2):246–251. doi:10.1016/j.coi.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  12. Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9(8):603–615. doi:10.1038/nrm2457

    Article  CAS  PubMed  Google Scholar 

  13. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. doi:10.1038/ni.1674

    Article  CAS  PubMed  Google Scholar 

  14. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15(5):431–438. doi:10.1038/ni.2850

    Article  CAS  PubMed  Google Scholar 

  15. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172(7):3994–3998

    Article  CAS  PubMed  Google Scholar 

  16. Seth S, Maier MK, Qiu Q, Ravens I, Kremmer E, Forster R, Bernhardt G (2007) The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem Biophys Res Commun 364(4):959–965. doi:10.1016/j.bbrc.2007.10.102

    Article  CAS  PubMed  Google Scholar 

  17. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, Yao S, Bevers S, Edil BH (2016) Identification of CD112R as a novel checkpoint for human T cells. J Exp Med 213(2):167–176. doi:10.1084/jem.20150785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198(4):557–567. doi:10.1084/jem.20030788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tokunaga T, Tomita A, Sugimoto K, Shimada K, Iriyama C, Hirose T, Shirahata-Adachi M, Suzuki Y, Mizuno H, Kiyoi H, Asano N, Nakamura S, Kinoshita T, Naoe T (2014) De novo diffuse large B-cell lymphoma with a CD20 immunohistochemistry-positive and flow cytometry-negative phenotype: molecular mechanisms and correlation with rituximab sensitivity. Cancer Sci 105(1):35–43. doi:10.1111/cas.12307

    Article  CAS  PubMed  Google Scholar 

  20. Ahmad S, Gupta S, Kumar R, Varshney GC, Raghava GP (2014) Herceptin resistance database for understanding mechanism of resistance in breast cancer patients. Sci Rep 4:4483. doi:10.1038/srep04483

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mamessier E, Sylvain A, Bertucci F, Castellano R, Finetti P, Houvenaeghel G, Charaffe-Jaufret E, Birnbaum D, Moretta A, Olive D (2011) Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res 71(21):6621–6632. doi:10.1158/0008-5472.CAN-11-0792

    Article  CAS  PubMed  Google Scholar 

  22. Ochoa MC, Minute L, Rodriguez I, Garasa S, Perez-Ruiz E, Inoges S, Melero I, Berraondo P (2017) Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol 95(4):347–355. doi:10.1038/icb.2017.6

    Article  CAS  PubMed  Google Scholar 

  23. Park S, Jiang Z, Mortenson ED, Deng L, Radkevich-Brown O, Yang X, Sattar H, Wang Y, Brown NK, Greene M, Liu Y, Tang J, Wang S, Fu YX (2010) The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18(2):160–170. doi:10.1016/j.ccr.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chaganty BK, Lu Y, Qiu S, Somanchi SS, Lee DA, Fan Z (2016) Trastuzumab upregulates expression of HLA-ABC and T cell costimulatory molecules through engagement of natural killer cells and stimulation of IFNgamma secretion. Oncoimmunology 5(4):e1100790. doi:10.1080/2162402x.2015.1100790

    Article  PubMed  Google Scholar 

  25. Johnston RJ, Yu X, Grogan JL (2015) The checkpoint inhibitor TIGIT limits antitumor and antiviral CD8+ T cell responses. Oncoimmunology 4(9):e1036214. doi:10.1080/2162402x.2015.1036214

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is partly supported by American Cancer Society Institutional Research Grant Number 57-001-53 and Cancer League of Colorado 163479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.


Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Sunderland, A., Zhou, Y. et al. Blockade of CD112R and TIGIT signaling sensitizes human natural killer cell functions. Cancer Immunol Immunother 66, 1367–1375 (2017). https://doi.org/10.1007/s00262-017-2031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2031-x

Keywords

Navigation