Skip to main content

Advertisement

Log in

Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

This phase I trial reports the safety and activity of BPX101, a second-generation antigen-targeted autologous antigen presenting cell (APC) vaccine in men with metastatic castration-resistant prostate cancer (mCRPC). To manufacture BPX101, APCs collected in a single leukapheresis were transduced with adenoviral vector Ad5f35 encoding inducible human (ih)-CD40, followed by incubation with protein PA001, which contains the extracellular domain of human prostate-specific membrane antigen. The ih-CD40 represents a modified chimeric version of the dendritic cell (DC) co-stimulatory molecule, CD40, which responds to a bioinert membrane-permeable activating dimerizer drug, rimiducid (AP1903), permitting temporally controlled, lymphoid-localized, DC-specific activation. Eighteen men with progressive mCRPC following ≤1 prior chemotherapy regimen were enrolled to evaluate three doses of BPX101 (4 × 106, 12.5 × 106 and 25 × 106 cells) administered intradermally every 2–4 weeks followed by rimiducid (0.4 mg/kg) intravenous (IV) infusion 24 h after each BPX101 dose. There were no dose-limiting toxicities. Immune upregulation as well as anti-tumor activity was observed with PSA declines, objective tumor regressions and robust efficacy of post-trial therapy. This novel antigen-targeted and in vivo activated immunotherapy platform may warrant further development as monotherapy and as a component of rational combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AE:

Adverse event

CT:

Computerized tomography

CTC:

Circulating tumor cell

CTCAE:

Common Toxicity Criteria for Adverse Events

DLTs:

Dose-limiting toxicities

FKBP:

FK506-binding protein

HbsAg:

Hepatitis B surface antigen

HTLV:

Human T-cell lymphotropic virus

ih:

Inducible human

IHC:

Immunohistochemistry

KPS:

Karnofsky Performance Score

LPS:

Lipopolysaccharide

MCP:

Monocyte chemoattractant protein

mCRPC:

Metastatic castration-resistant prostate cancer

MTD:

Maximum tolerated dose

PAP:

Prostatic-acid phosphatase

PCWG:

Prostate Cancer Working Group

PFS:

Progression-free survival

PR:

Partial response

PSA:

Prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

RANTES:

Regulated on activation, normal T cell expressed and secreted

RECIST:

Response Evaluation Criteria in Solid Tumors

References

  1. Tannock IF, de Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512. doi:10.1056/NEJMoa040720

    Article  CAS  PubMed  Google Scholar 

  2. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351:1513–1520. doi:10.1056/NEJMoa041318

    Article  CAS  PubMed  Google Scholar 

  3. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. doi:10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  4. de Bono JS, Oudard S, Ozguroglu M et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154. doi:10.1016/S0140-6736(10)61389-X

    Article  PubMed  Google Scholar 

  5. de Bono JS, Logothetis CJ, Molina A et al (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364:1995–2005. doi:10.1056/NEJMoa1014618

    Article  PubMed  PubMed Central  Google Scholar 

  6. Scher HI, Fizazi K, Saad F et al (2012) Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 367:1187–1197. doi:10.1056/NEJMoa1207506

    Article  CAS  PubMed  Google Scholar 

  7. Parker C, Nilsson S, Heinrich D et al (2013) Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369:213–223. doi:10.1056/NEJMoa1213755

    Article  CAS  PubMed  Google Scholar 

  8. Ryan CJ, Smith MR, de Bono JS et al (2013) Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 368:138–148. doi:10.1056/NEJMoa1209096

    Article  CAS  PubMed  Google Scholar 

  9. Beer TM, Armstrong AJ, Rathkopf DE et al (2014) Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 371:424–433. doi:10.1056/NEJMoa1405095

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422. doi:10.1056/NEJMoa1001294

    Article  CAS  PubMed  Google Scholar 

  11. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115:3670–3679. doi:10.1002/cncr.24429

    Article  CAS  PubMed  Google Scholar 

  12. Kikuchi T, Worgall S, Singh R, Moore MA, Crystal RG (2000) Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nat Med 6:1154–1159. doi:10.1038/80498

    Article  CAS  PubMed  Google Scholar 

  13. Hanks BA, Jiang J, Singh RA, Song W, Barry M, Huls MH, Slawin KM, Spencer DM (2005) Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat Med 11:130–137. doi:10.1038/nm1183

    Article  CAS  PubMed  Google Scholar 

  14. Lapteva N, Seethammagari MR, Hanks BA, Jiang J, Levitt JM, Slawin KM, Spencer DM (2007) Enhanced activation of human dendritic cells by inducible CD40 and Toll-like receptor-4 ligation. Can Res 67:10528–10537. doi:10.1158/0008-5472.CAN-07-0833

    Article  CAS  Google Scholar 

  15. Iuliucci JD, Oliver SD, Morley S, Ward C, Ward J, Dalgarno D, Clackson T, Berger HJ (2001) Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers. J Clin Pharmacol 41:870–879

    Article  CAS  PubMed  Google Scholar 

  16. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365:1673–1683. doi:10.1056/NEJMoa1106152

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clackson T, Yang W, Rozamus LW et al (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA 95:10437–10442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wright GL Jr, Grob BM, Haley C et al (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48:326–334

    Article  PubMed  Google Scholar 

  19. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Can Res 57:3629–3634

    CAS  Google Scholar 

  20. Eisenhauer EA, Therasse P, Bogaerts J et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45:228–247. doi:10.1016/j.ejca.2008.10.026

    Article  CAS  PubMed  Google Scholar 

  21. Scher HI, Halabi S, Tannock I et al (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26:1148–1159. doi:10.1200/JCO.2007.12.4487

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xing D, Decker WK, Li S et al (2006) AML-loaded DC generate Th1-type cellular immune responses in vitro. Cytotherapy 8:95–104. doi:10.1080/14653240600620093

    Article  CAS  PubMed  Google Scholar 

  23. Decker WK, Xing D, Li S et al (2006) Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help. Vaccine 24:3203–3216. doi:10.1016/j.vaccine.2006.01.029

    Article  CAS  PubMed  Google Scholar 

  24. Scher HI, Heller G, Molina A et al (2015) Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol 33:1348–1355. doi:10.1200/JCO.2014.55.3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rini BI, Weinberg V, Bok R, Small EJ (2003) Prostate-specific antigen kinetics as a measure of the biologic effect of granulocyte-macrophage colony-stimulating factor in patients with serologic progression of prostate cancer. J Clin Oncol 21:99–105

    Article  CAS  PubMed  Google Scholar 

  26. Small EJ, Reese DM, Um B, Whisenant S, Dixon SC, Figg WD (1999) Therapy of advanced prostate cancer with granulocyte macrophage colony-stimulating factor. Clin Cancer Res 5:1738–1744

    CAS  PubMed  Google Scholar 

  27. Small E, Demkow T, Gerritsen WR et al (2009) A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer (CRPC). In: Proceedings genitourinary cancer symposium. Orlando, 26–28 February 2009 (abstract 7)

  28. Higano CS, Saad F, Curti BD et al (2009) A phase III trial of GVAX immunotherapy for prostate cancer versus docetaxel plus prednisone in asymptomatic, castration-resistant prostate cancer (CRPC). In: Proceedings genitourinary cancers symposium. Orlando, 26–28 February 2009 (abstract LBA150)

  29. Sheikh NA, Petrylak D, Kantoff PW et al (2013) Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunother 62:137–147. doi:10.1007/s00262-012-1317-2

    Article  CAS  PubMed  Google Scholar 

  30. Fong L, Carroll P, Weinberg V et al (2014) Activated lymphocyte recruitment into the tumor microenvironment following preoperative sipuleucel-T for localized prostate cancer. J Natl Cancer Inst. doi:10.1093/jnci/dju268

    PubMed  PubMed Central  Google Scholar 

  31. Kwon ED, Drake CG, Scher HI et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15:700–712. doi:10.1016/S1470-2045(14)70189-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. doi:10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kantoff PW, Schuetz TJ, Blumenstein BA et al (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105. doi:10.1200/JCO.2009.25.0597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Podrazil M, Horvath R, Becht E et al (2015) Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 6:18192–18205. doi:10.18632/oncotarget.4145

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yoshimura K, Minami T, Nozawa M, Kimura T, Egawa S, Fujimoto H, Yamada A, Itoh K, Uemura H (2016) A phase 2 randomized controlled trial of personalized peptide vaccine immunotherapy with low-dose dexamethasone versus dexamethasone alone in chemotherapy-naive castration-resistant prostate cancer. Eur Urol 70:35–41. doi:10.1016/j.eururo.2015.12.050

    Article  CAS  PubMed  Google Scholar 

  36. McNeel DG, Dunphy EJ, Davies JG et al (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 27:4047–4054. doi:10.1200/JCO.2008.19.9968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miles BJ, Shalev M, Aguilar-Cordova E et al (2001) Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum Gene Ther 12:1955–1967. doi:10.1089/104303401753204535

    Article  CAS  PubMed  Google Scholar 

  38. Herman JR, Adler HL, Aguilar-Cordova E, Rojas-Martinez A, Woo S, Timme TL, Wheeler TM, Thompson TC, Scardino PT (1999) In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 10:1239–1249. doi:10.1089/10430349950018229

    Article  CAS  PubMed  Google Scholar 

  39. Narayanan P, Lapteva N, Seethammagari M, Levitt JM, Slawin KM, Spencer DM (2011) A composite MyD88/CD40 switch synergistically activates mouse and human dendritic cells for enhanced antitumor efficacy. J Clin Investig 121:1524–1534. doi:10.1172/JCI44327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Clinical Research Unit and Center for Clinical and Translational Sciences University of Texas Health Science Center at Houston for supporting the conduct of this trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guru Sonpavde.

Ethics declarations

Conflict of interest

G. Sonpavde: Consultant for Bayer, Sanofi, Pfizer, Novartis, Eisai, Janssen, Amgen, Astrazeneca, Merck, Genentech, Argos, Agensys; research support to institution from Bellicum, Bayer, Onyx, Celgene, Boehringer-Ingelheim, Merck, Pfizer; author for Uptodate; speaker for Clinical Care Options. J.D. McMannis, Y. Bai, M. Seethammagari, J.M.C. Bull, V. Hawkins, T. Dancsak, N. Lapteva, J.M. Levitt: funding to institution by Bellicum Pharmaceuticals, Inc. D.M. Spencer, A. Moseley, K.M. Slawin: employed by and shareholders of Bellicum Pharmaceuticals, Inc.

Research involving human participants

The protocol was approved by the institutional review boards (IRBs) at the University of Texas, Houston, Texas.

Informed consent

All participants provided written informed consent. The trial was registered at ClinicalTrials.gov under the identification NCT00868595.

Financial support

The trial was funded and sponsored by Bellicum Pharmaceuticals, Inc.

Additional information

Previous presentations:

Poster presentations at the ASCO (American Society of Clinical Oncology) annual conference, Chicago, IL, USA in June 2011 (J Clin Oncol 2011; 29: abstract 4670; J Clin Oncol 2011; 29: abstract 167).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonpavde, G., McMannis, J.D., Bai, Y. et al. Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunol Immunother 66, 1345–1357 (2017). https://doi.org/10.1007/s00262-017-2027-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2027-6

Keywords

Navigation