Skip to main content

Advertisement

Log in

Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The endoplasmic reticulum (ER) stress is a cellular process that occurs as a consequence of several stress circumstances, such as the accumulation of unfolded proteins in the lumen of the ER or distinct insults that disturb the ER normal function. Different conditions in the tumor microenvironment (TME), including hypoxia, nutrient deprivation, and the elevated production of reactive oxygen and nitrogen species destabilize the loading and dispatching of the newly synthesized proteins, triggering ER stress in cancer cells and tumor-infiltrating leukocytes. In order to cope with TME-induced ER stress, tumor and stromal cells initiate an adaptive response process that aims to resolve ER stress and to restore cellular homeostasis, which is referred as the unfolded protein responses (UPR). Paradoxically, the UPR can also induce cell death under severe and/or permanent ER stress. The UPR is started through three mediators, the activation of the inositol-requiring enzyme-1α, the pancreatic ER kinase-like ER kinase, and the activating transcription factor 6. In this minireview, we will discuss the pro- and anti-tumorigenic role of the UPR in cancer cells. In addition, we will describe the effects of the TME-induced ER stress in the immunosuppressive activity of tumor-infiltrating myeloid cells. Also, we will review the results of emerging therapeutic interventions that target ER stress and the UPR mediators in cancer. We postulate that the inhibition of ER stress or the UPR-related elements could represent a significant approach to increase the efficacy of various forms of cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A-NEC:

Acute necrotizing enterocolitis

ATF4:

Activation transcription factor 4

ATF6:

Activating transcription factor 6

C/EBP:

CAAT/enhancer binding protein

cDCs:

Conventional dendritic cells

CHOP:

CAAT/enhancer binding protein (C/EBP) homologous protein

CRT:

Calreticulin

DAMPs:

Danger-associated molecular patterns

DR5:

TNF-related apoptosis-induced ligand receptor 2

EAE:

Autoimmune encephalomyelitis

eIF2α:

Eukaryotic initiation factor 2α

ER stress:

Endoplasmic reticulum stress

ERAD:

ER-associated degradation

HIF-1α:

Hypoxia-inducible factor 1 alpha

ICD:

Immunogenic cell death

IRE-1α:

Inositol-requiring enzyme-1α

Kdelr1:

KDEL receptor 1

LOX-1:

Lectin-type oxidized LDL receptor-1

M-MDSC:

Monocytic MDSC

MDSC:

Myeloid-derived suppressor cells

Nrf2:

NF-E2-related factor-2

PERK:

Pancreatic ER kinase (PKR)-like ER kinase

PKR:

Protein kinase RNA

PMN-MDSC:

Granulocytic MDSC

PRR:

Pathogen recognition receptors

RIDD:

IRE-1-dependent decay of mRNA

ROS:

Reactive oxygen species

Rpl22:

RP ribosomal protein L22

t-DC:

Tumor-infiltrating dendritic cells

TAM:

Tumor-associated macrophages

Th2:

Type 2 T helper cells

TLRs:

Toll-like receptors

TME:

Tumor microenvironment

TNBC:

Triple-negative breast cancer

TRAF2:

TNF receptor-associated factor 2

UPR:

Unfolded protein responses

VEGF-A:

Vascular endothelial growth factor A

XBP-1:

X-box binding protein-1

References

  1. Janssens S, Pulendran B, Lambrecht BN (2014) Emerging functions of the unfolded protein response in immunity. Nat Immunol 15(10):910–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith MH, Ploegh HL, Weissman JS (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science 334(6059):1086–1090. doi:10.1126/science.1209235

    Article  CAS  PubMed  Google Scholar 

  3. Bettigole SE, Glimcher LH (2015) Endoplasmic reticulum stress in immunity. Annu Rev Immunol 33:107–138. doi:10.1146/annurev-immunol-032414-112116

    Article  CAS  PubMed  Google Scholar 

  4. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2(6):326–332. doi:10.1038/35014014

    Article  CAS  PubMed  Google Scholar 

  5. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. doi:10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  7. Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG, Wu C, Yates JR 3rd, Su AI, Kelly JW, Wiseman RL (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep 3(4):1279–1292. doi:10.1016/j.celrep.2013.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sriburi R, Jackowski S, Mori K, Brewer JW (2004) XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol 167(1):35–41. doi:10.1083/jcb.200406136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666

    Article  CAS  PubMed  Google Scholar 

  10. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904

    Article  CAS  PubMed  Google Scholar 

  11. Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA (2012) miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 48(3):353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33(1):75–89

    Article  CAS  PubMed  Google Scholar 

  13. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885. doi:10.1038/sj.embor.7400779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ahonen TJ, Xie J, LeBaron MJ, Zhu J, Nurmi M, Alanen K, Rui H, Nevalainen MT (2003) Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells. J Biol Chem 278(29):27287–27292. doi:10.1074/jbc.M304307200

    Article  CAS  PubMed  Google Scholar 

  15. Daneshmand S, Quek ML, Lin E, Lee C, Cote RJ, Hawes D, Cai J, Groshen S, Lieskovsky G, Skinner DG, Lee AS, Pinski J (2007) Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum Pathol 38(10):1547–1552. doi:10.1016/j.humpath.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  16. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB, Hatziapostolou M, Lim E, Tam WL, Ni M, Chen Y, Mai J, Shen H, Hu DZ, Adoro S, Hu B, Song M, Tan C, Landis MD, Ferrari M, Shin SJ, Brown M, Chang JC, Liu XS, Glimcher LH (2014) XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508(7494):103–107. doi:10.1038/nature13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279(19):20108–20117. doi:10.1074/jbc.M314219200

    Article  CAS  PubMed  Google Scholar 

  18. Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105(30):10519–10524. doi:10.1073/pnas.0800939105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dadey DY, Kapoor V, Khudanyan A, Urano F, Kim AH, Thotala D, Hallahan DE (2016) The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma. Oncotarget 7(2):2080–2092. doi:10.18632/oncotarget.6712

    Article  PubMed  Google Scholar 

  20. Pereira ER, Liao N, Neale GA, Hendershot LM (2010) Transcriptional and post-transcriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One. doi:10.1371/journal.pone.0012521

    Google Scholar 

  21. Romero-Ramirez L, Cao H, Regalado MP, Kambham N, Siemann D, Kim JJ, Le QT, Koong AC (2009) X box-binding protein 1 regulates angiogenesis in human pancreatic adenocarcinomas. Transl Oncol 2(1):31–38

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blais JD, Addison CL, Edge R, Falls T, Zhao H, Wary K, Koumenis C, Harding HP, Ron D, Holcik M, Bell JC (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26(24):9517–9532. doi:10.1128/MCB.01145-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, Friend D, Grusby MJ, Alt F, Glimcher LH (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412(6844):300–307. doi:10.1038/35085509

    Article  CAS  PubMed  Google Scholar 

  24. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L, Vetters J, Delrue I, De RR, Parthoens E, Pouliot P, Iwawaki T, Janssens S, Lambrecht BN (2014) The unfolded-protein-response sensor IRE-1alpha regulates the function of CD8alpha+ dendritic cells. Nat Immunol 15(3):248–257

    Article  CAS  PubMed  Google Scholar 

  25. Iwakoshi NN, Pypaert M, Glimcher LH (2007) The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med 204(10):2267–2275. doi:10.1084/jem.20070525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martinon F, Chen X, Lee AH, Glimcher LH (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418. doi:10.1038/ni.1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V, Gaston JS (2010) Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci USA 107(41):17698–17703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt A, Song M, Zhang S, Bettigole SE, Gupta D, Holcomb K, Ellenson LH, Caputo T, Lee AH, Conejo-Garcia JR, Glimcher LH (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161(7):1527–1538. doi:10.1016/j.cell.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH (2017) Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 168(4):692–706. doi:10.1016/j.cell.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  30. Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide RH, English NR, Knight SC, Yagita H, McCaffrey JC, Antonia S, Hockstein N, Witt R, Masters G, Bauer T, Gabrilovich DI (2014) ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest 124(6):2626–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, Partlova S, Garfall A, Vogl DT, Xu X, Knight SC, Malietzis G, Lee GH, Eruslanov E, Albelda SM, Wang X, Mehta JL, Bewtra M, Rustgi A, Hockstein N, Witt R, Masters G, Nam B, Smirnov D, Sepulveda MA, Gabrilovich DI (2016) Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. doi:10.1126/sciimmunol.aaf8943

    PubMed  PubMed Central  Google Scholar 

  32. Thevenot PT, Sierra RA, Raber PL, Al-Khami AA, Trillo-Tinoco J, Zarreii P, Ochoa AC, Cui Y, Del VL, Rodriguez PC (2014) The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors. Immunity 41(3):389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sonda N, Chioda M, Zilio S, Simonato F, Bronte V (2011) Transcription factors in myeloid-derived suppressor cell recruitment and function. Curr Opin Immunol 23(2):279–285

    Article  CAS  PubMed  Google Scholar 

  34. Yan D, Wang HW, Bowman RL, Joyce JA (2016) STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1alpha activation. Cell Rep 16(11):2914–2927. doi:10.1016/j.celrep.2016.08.035

    Article  CAS  PubMed  Google Scholar 

  35. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M (2011) Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. Proc Natl Acad Sci USA 108(16):6561–6566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zanetti M, Rodvold JJ, Mahadevan NR (2016) The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells. Oncogene 35(3):269–278. doi:10.1038/onc.2015.108

    Article  CAS  PubMed  Google Scholar 

  37. Brunsing R, Omori SA, Weber F, Bicknell A, Friend L, Rickert R, Niwa M (2008) B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem 283(26):17954–17961. doi:10.1074/jbc.M801395200

    Article  CAS  PubMed  Google Scholar 

  38. Solanki NR, Stadanlick JE, Zhang Y, Duc AC, Lee SY, Lauritsen JP, Zhang Z, Wiest DL (2016) Rpl22 loss selectively impairs alphabeta T cell development by dysregulating endoplasmic reticulum stress signaling. J Immunol 197(6):2280–2289. doi:10.4049/jimmunol.1600815

    Article  CAS  PubMed  Google Scholar 

  39. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang JJ, Bando H, Meng J, Sabharwal L, Stofkova A, Nishikawa N, Suzuki H, Ogura H, Ueda N, Tsuruoka M, Harada M, Kobayashi J, Hasegawa T, Yoshida H, Koseki H, Miura I, Wakana S, Nishida K, Kitamura H, Fukada T, Hirano T, Murakami M (2015) KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun 6:7474. doi:10.1038/ncomms8474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Omar I, Lapenna A, Cohen-Daniel L, Tirosh B, Berger M (2016) Schlafen2 mutation unravels a role for chronic ER stress in the loss of T cell quiescence. Oncotarget 7(26):39396–39407. doi:10.18632/oncotarget.9818

    PubMed  PubMed Central  Google Scholar 

  41. Takano S, Ando T, Hiramatsu N, Kanayama A, Maekawa S, Ohnuma Y, Enomoto N, Ogawa H, Paton AW, Paton JC, Kitamura M, Nakao A (2008) T cell receptor-mediated signaling induces GRP78 expression in T cells: the implications in maintaining T cell viability. Biochem Biophys Res Commun 371(4):762–766. doi:10.1016/j.bbrc.2008.04.132

    Article  CAS  PubMed  Google Scholar 

  42. Pino SC, O’Sullivan-Murphy B, Lidstone EA, Thornley TB, Jurczyk A, Urano F, Greiner DL, Mordes JP, Rossini AA, Bortell R (2008) Protein kinase C signaling during T cell activation induces the endoplasmic reticulum stress response. Cell Stress Chaperones 13(4):421–434. doi:10.1007/s12192-008-0038-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scheu S, Stetson DB, Reinhardt RL, Leber JH, Mohrs M, Locksley RM (2006) Activation of the integrated stress response during T helper cell differentiation. Nat Immunol 7(6):644–651. doi:10.1038/ni1338

    Article  CAS  PubMed  Google Scholar 

  44. Kamimura D, Bevan MJ (2008) Endoplasmic reticulum stress regulator XBP-1 contributes to effector CD8+ T cell differentiation during acute infection. J Immunol 181(8):5433–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pino SC, O’Sullivan-Murphy B, Lidstone EA, Yang C, Lipson KL, Jurczyk A, diIorio P, Brehm MA, Mordes JP, Greiner DL, Rossini AA, Bortell R (2009) CHOP mediates endoplasmic reticulum stress-induced apoptosis in Gimap5-deficient T cells. PLoS One 4(5):e5468. doi:10.1371/journal.pone.0005468

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo-Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D (2016) The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 7:12073. doi:10.1038/ncomms12073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu P, Struijs MC, Mei J, Witte-Bouma J, Korteland-van Male AM, de Bruijn AC, van Goudoever JB, Renes IB (2013) Endoplasmic reticulum stress, unfolded protein response and altered T cell differentiation in necrotizing enterocolitis. PLoS One 8(10):e78491. doi:10.1371/journal.pone.0078491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289. doi:10.1038/nri2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875. doi:10.1038/nrc3380

    Article  CAS  PubMed  Google Scholar 

  50. Luo Y, Li SJ, Yang J, Qiu YZ, Chen FP (2013) HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem Biophys Res Commun 438(4):732–738. doi:10.1016/j.bbrc.2013.07.098

    Article  CAS  PubMed  Google Scholar 

  51. Tufi R, Panaretakis T, Bianchi K, Criollo A, Fazi B, Di Sano F, Tesniere A, Kepp O, Paterlini-Brechot P, Zitvogel L, Piacentini M, Szabadkai G, Kroemer G (2008) Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ 15(2):274–282. doi:10.1038/sj.cdd.4402275

    Article  CAS  PubMed  Google Scholar 

  52. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, Yuan J, Zitvogel L, Madeo F, Williams DB, Kroemer G (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590. doi:10.1038/emboj.2009.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buque A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L (2015) eIF2alpha phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 33:86–92. doi:10.1016/j.semcancer.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  54. Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N, Tesniere A, Zitvogel L, Kroemer G (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30(10):1147–1158. doi:10.1038/onc.2010.500

    Article  CAS  PubMed  Google Scholar 

  55. Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, Yamazaki T, Sukkurwala AQ, Michaud M, Mignot G, Schlemmer F, Sulpice E, Locher C, Gidrol X, Ghiringhelli F, Modjtahedi N, Galluzzi L, Andre F, Zitvogel L, Kepp O, Kroemer G (2012) Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 4(143):143ra199. doi:10.1126/scitranslmed.3003807

    Article  Google Scholar 

  56. Tang CH, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, Del Valle JR, Hu CC (2014) Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest 124(6):2585–2598. doi:10.1172/JCI73448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ri M, Tashiro E, Oikawa D, Shinjo S, Tokuda M, Yokouchi Y, Narita T, Masaki A, Ito A, Ding J, Kusumoto S, Ishida T, Komatsu H, Shiotsu Y, Ueda R, Iwawaki T, Imoto M, Iida S (2012) Identification of toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J 2(7):e79. doi:10.1038/bcj.2012.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Atkins C, Liu Q, Minthorn E, Zhang SY, Figueroa DJ, Moss K, Stanley TB, Sanders B, Goetz A, Gaul N, Choudhry AE, Alsaid H, Jucker BM, Axten JM, Kumar R (2013) Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res 73(6):1993–2002

    Article  CAS  PubMed  Google Scholar 

  59. Yu Q, Zhao B, Gui J, Katlinski KV, Brice A, Gao Y, Li C, Kushner JA, Koumenis C, Diehl JA, Fuchs SY (2015) Type I interferons mediate pancreatic toxicities of PERK inhibition. Proc Natl Acad Sci USA 112(50):15420–15425. doi:10.1073/pnas.1516362112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Cancer Institute, NIH Grant No. CA18485 to Paulo C. Rodriguez, PhD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eslam Mohamed or Paulo C. Rodriguez.

Ethics declarations

Conflict of interest

The authors do not have conflict of interests to disclose.

Additional information

This paper is a Focussed Research Review based on a presentation given at the conference Regulatory Myeloid Suppressor Cells: From Basic Discovery to Therapeutic Application which was hosted by the Wistar Institute in Philadelphia, PA, USA, 16th–19th June, 2016. It is part of a Cancer Immunology, Immunotherapy series of Focussed Research Reviews.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, E., Cao, Y. & Rodriguez, P.C. Endoplasmic reticulum stress regulates tumor growth and anti-tumor immunity: a promising opportunity for cancer immunotherapy. Cancer Immunol Immunother 66, 1069–1078 (2017). https://doi.org/10.1007/s00262-017-2019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2019-6

Keywords

Navigation