Skip to main content
Log in

Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The capacity of natural killer (NK) cells to kill tumor cells without specific antigen recognition provides an advantage over T cells and makes them potential effectors for tumor immunotherapy. However, the efficacy of NK cell adoptive therapy can be limited by the immunosuppressive tumor microenvironment. Transforming growth factor-β (TGF-β) is a potent immunosuppressive cytokine that can suppress NK cell function. To convert the suppressive signal induced by TGF-β to an activating signal, we genetically modified NK-92 cells to express a chimeric receptor with TGF-β type II receptor extracellular and transmembrane domains and the intracellular domain of NK cell-activating receptor NKG2D (TN chimeric receptor). NK-92 cells expressing TN receptors were resistant to TGF-β-induced suppressive signaling and did not down-regulate NKG2D. These modified NK-92 cells had higher killing capacity and interferon γ (IFN-γ) production against tumor cells compared with the control cells and their cytotoxicity could be further enhanced by TGF-β. More interestingly, the NK-92 cells expressing TN receptors were better chemo-attracted to the tumor cells expressing TGF-β. The presence of these modified NK-92 cells significantly inhibited the differentiation of human naïve CD4+ T cells to regulatory T cells. NK-92-TN cells could also inhibit tumor growth in vivo in a hepatocellular carcinoma xenograft tumor model. Therefore, TN chimeric receptors can be a novel strategy to augment anti-tumor efficacy in NK cell adoptive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

α-MEM:

Minimum essential medium alpha

BFA:

Brefeldin A

DAP:

DNAX-activating protein

DMEM:

Dulbecco-modified eagle medium

FACS:

Fluorescence-activated cell sorter

FBS:

Fetal bovine serum

HLA:

Human leucocyte antigen

HRP:

Horseradish Peroxidase

IFN-γ:

Interferonγ

IgA:

Immunoglobulin A

IL-2:

Interleukin 2

KIR:

Killer cell Ig-like Receptors

LDH:

Lactic dehydrogenase

mAb:

Monoclonal antibody

MFI:

Mean fluorescent intensity

MHC:

Major histocompatibility complex

NK:

Natural killer

NK-92-TN:

NK-92 expressing extracellular and transmembrane domains of TGF-β receptor II with intracellular domain of NKG2D

NK-92-Vector:

NK-92 expressing vector

NKG2C:

NK Group 2 member C

NKG2D:

NK Group 2 member D

PCR:

Polymerase chain reaction

PE:

Phycoerythrin

PMA:

Phorbol myristate acetate

PVDF:

Polyvinylidene fluoride

RPMI:

Roswell Park Memorial Institute

RT-PCR:

Real-time PCR

SDS–PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TGF-β:

Transforming growth factor-β

TGF-βR:

Transforming growth factor-β receptor

Treg:

Regulatory T

VSVG:

Vesicular stomatitis virus G

YFP:

Yellow fluorescent protein

References

  1. Ljunggren HG, Malmberg KJ (2007) Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7:329–339. doi:10.1038/nri2073

    Article  CAS  PubMed  Google Scholar 

  2. Barkholt L, Alici E, Conrad R et al. (2009) Safety analysis of ex vivo-expanded NK and NK-like T cells administered to cancer patients: a phase I clinical study. Immunotherapy 1:753–764. doi:10.2217/imt.09.47

    Article  CAS  PubMed  Google Scholar 

  3. Leung W (2014) Infusions of allogeneic natural killer cells as cancer therapy. Clin Cancer Res 20:3390–3400. doi:10.1158/1078-0432.CCR-13-1766

    Article  CAS  PubMed  Google Scholar 

  4. Jung B, Staudacher JJ, Beauchamp D (2016) Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology. doi:10.1053/j.gastro.2016.10.015

    Google Scholar 

  5. Bierie B, Moses HL (2006) Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520. doi:10.1038/nrc1926

    Article  CAS  PubMed  Google Scholar 

  6. Massagué J (2008) TGFβ in cancer. Cell 134:215–230. doi:10.1016/j.cell.2008.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  7. Drabsch Y, ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568. doi:10.1007/s10555-012-9375-7

    Article  CAS  PubMed  Google Scholar 

  8. Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT (2010) TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 12:7–13. doi:10.1093/neuonc/nop009

    Article  CAS  PubMed  Google Scholar 

  9. Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783. doi:10.1158/0008-5472.CAN-09-2123

    Article  CAS  PubMed  Google Scholar 

  10. Yang B, Liu H, Shi W, Wang Z, Sun S, Zhang G, Hu Y, Liu T, Jiao S (2013) Blocking transforming growth factor-beta signaling pathway augments antitumor effect of adoptive NK-92 cell therapy. Int Immunopharmacol 17:198–204. doi:10.1016/j.intimp.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  11. Gong JH, Maki G, Klingemann HG (1994) Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8:652–658

    CAS  PubMed  Google Scholar 

  12. Wu L, Zhang C, Tian Z, Zhang J (2011) NK cell-based approach for screening novel functional immune genes. Int Immunopharmacol 11:274–279. doi:10.1016/j.intimp.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Maki G, Klingemann HG, Martinson JA, Tam YK (2001) Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J Hematother. Stem Cell Res 10:369–383. doi:10.1089/152581601750288975

    Article  CAS  PubMed  Google Scholar 

  14. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  CAS  PubMed  Google Scholar 

  15. Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumor initiation, growth, and metastasis. Blood 97:192–197

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109

    Article  CAS  PubMed  Google Scholar 

  17. Rosenzweig SD, Holland SM (2005) Defects in the interferon-gamma and interleukin-12 pathways. Immunol Rev 203:38–47. doi:10.1111/j.0105-2896.2005.00227.x

    Article  CAS  PubMed  Google Scholar 

  18. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+ CD25+ regulatory T†„cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344. doi:10.1002/eji.200324181

    Article  CAS  PubMed  Google Scholar 

  19. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49. doi:10.1126/science.1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA (2011) Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res 17:6287–6297. doi:10.1158/1078-0432.ccr-11-1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Souza AP, Bonorino C (2009) Tumor immunosuppressive environment: effects on tumor-specific and nontumor antigen immune responses. Expert Rev Anticancer Ther 9:1317–1332. doi:10.1586/era.09.88

    Article  PubMed  Google Scholar 

  22. Jones E, Pu H, Kyprianou N (2009) Targeting TGF-beta in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther Targets 13:227–234. doi:10.1517/14728220802705696

    Article  CAS  PubMed  Google Scholar 

  23. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor microenvironment. J Immunother 29:233–240. doi:10.1097/01.cji.0000199193.29048.56

    Article  CAS  PubMed  Google Scholar 

  24. Zhao Y, Hu J, Li R, Song J, Kang Y, Liu S, Zhang D (2015) Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-beta signaling pathway. Onco Targets Ther 8:1553–1559. doi:10.2147/OTT.S82616. eCollection 2015

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Z, Zhang LJ, Zhang HR et al (2014) Tumor-derived transforming growth factor-beta is critical for tumor progression and evasion from immune surveillance. Asian Pac J Cancer Prev 15:5181–5186

    Article  PubMed  Google Scholar 

  26. Carambia A, Freund B, Schwinge D et al (2014) TGF-beta-dependent induction of CD4(+)CD25(+)Foxp3(+) Tregs by liver sinusoidal endothelial cells. J Hepatol 61:594–599. doi:10.1016/j.jhep.2014.04.027

    Article  CAS  PubMed  Google Scholar 

  27. Rouce RH, Shaim H, Sekine T et al (2015) The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B acute lymphoblastic leukemia. Leukemia 30(4):800–811. doi:10.1038/leu.2015.327

    Article  PubMed  PubMed Central  Google Scholar 

  28. Donatelli SS, Zhou JM, Gilvary DL et al (2014) TGF- -inducible microRNA-183 silences tumor-associated natural killer cells. Proc Natl Acad Sci 111:4203–4208. doi:10.1073/pnas.1319269111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krneta T, Gillgrass A, Chew M, Ashkar AA (2015) The breast tumor microenvironment alters the phenotype and function of natural killer cells. Cell Mol Immunol 13(5):628–639. doi:10.1038/cmi.2015.42

    Article  PubMed  PubMed Central  Google Scholar 

  30. Alvarez M, Bouchlaka MN, Sckisel GD, Sungur CM, Chen M, Murphy WJ (2014) Increased antitumor effects using IL-2 with anti-TGF-beta reveals competition between mouse NK and CD8 T cells. J Immunol 193:1709–1716. doi:10.4049/jimmunol.1400034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y (2006) CD4 + CD25 + T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587

    Article  CAS  PubMed  Google Scholar 

  32. Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z, Wei H (2012) TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 8:e1002594. doi:10.1371/journal.ppat.1002594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laouar Y, Sutterwala FS, Gorelik L, Flavell RA (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600–607. doi:10.1038/ni1197

    Article  CAS  PubMed  Google Scholar 

  34. Grégoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, Walzer T (2007) The trafficking of natural killer cells. Immunol Rev 220:169–182. doi:10.1111/j.1600-065X.2007.00563.x

    Article  PubMed  Google Scholar 

  35. Shi FD, Ljunggren HG, La Cava A, Van Kaer L (2011) Organ-specific features of natural killer cells. Nat Rev Immunol. 11(10):658–671. doi:10.1038/nri3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Feili Gong for providing NK-92 cells and Dr. Yun Zhao for providing lenti-virus vectors. This work has been supported by grants from the National Natural Science Foundation of China (81273268, 81471586), the project funding from Suzhou city (SWG0904), Priority Academic Program Development of Jiangsu Higher Education Institutions, and the start-up grant from the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Liu.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Z. Wang, L. Guo, and Y. Song contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3717 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guo, L., Song, Y. et al. Augmented anti-tumor activity of NK-92 cells expressing chimeric receptors of TGF-βR II and NKG2D. Cancer Immunol Immunother 66, 537–548 (2017). https://doi.org/10.1007/s00262-017-1959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-1959-1

Keywords

Navigation