Skip to main content

Advertisement

Log in

Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukaemia

AML:

Acute myeloid leukaemia

BTLA:

B and T lymphocyte attenuator

CD200R:

CD200 receptor

CIK:

Cytokine-induced killer

CLL:

Chronic lymphocytic leukaemia

CML:

Chronic myeloid leukaemia

Cr:

Chromium

CTLA-4:

Cytotoxic T lymphocyte-associated protein-4

FSC:

Forward scatter

HVEM:

Herpes virus entry mediator

KIR:

Killer cell immunoglobulin-like receptor

LAG-3:

Lymphocyte activation gene-3

MM:

Multiple myeloma

PD-1:

Programmed death-1

SSC:

Side scatter

TIM-3:

T-cell immunoglobulin and mucin-domain-containing-3

References

  1. Linn YC, Lau LC, Hui KM (2002) Generation of cytokine-induced killer cells from leukaemic samples with in vitro cytotoxicity against autologous and allogeneic leukaemic blasts. Br J Haematol 116(1):78–86

    Article  CAS  PubMed  Google Scholar 

  2. Hoyle C, Bangs CD, Chang P, Kamel O, Mehta B, Negrin RS (1998) Expansion of Philadelphia chromosome-negative CD3(+)CD56(+) cytotoxic cells from chronic myeloid leukemia patients: in vitro and in vivo efficacy in severe combined immunodeficiency disease mice. Blood 92(9):3318–3327

    CAS  PubMed  Google Scholar 

  3. Kornacker M, Moldenhauer G, Herbst M, Weilguni E, Tita-Nwa F, Harter C, Hensel M, Ho AD (2006) Cytokine-induced killer cells against autologous CLL: direct cytotoxic effects and induction of immune accessory molecules by interferon-γ. Int J Cancer 119(6):1377–1382

    Article  CAS  PubMed  Google Scholar 

  4. Thanendrarajan S, Kim Y, Schmidt-Wolf I (2012) New adoptive immunotherapy strategies for solid tumours with CIK cells. Expert Opin Biol Ther 12(5):565–572

    Article  CAS  PubMed  Google Scholar 

  5. Mesiano G, Todorovic M, Gammaitoni L, Leuci V, Diego LG, Carnevale-Schianca F, Fagioli F, Piacibello W, Aglietta M, Sangiolo D (2012) Cytokine-induced killer (CIK) cells as feasible and effective adoptive immunotherapy for the treatment of solid tumors. Expert Opin Biol Ther 12(6):673–684

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL (1991) Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174(1):139–149

    Article  CAS  PubMed  Google Scholar 

  7. Linn YC (2013) Cytokine-induced killer cells for leukemia—from bench to bedside. Ann Hematol 92(suppl 1):S47

    Google Scholar 

  8. Jäkel CE, Vogt A, Gonzalez-Carmona MA, Schmidt-Wolf IGH (2014) Clinical studies applying cytokine-induced killer cells for the treatment of gastrointestinal tumors. J Immunol Res 2014:897214

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rettinger E, Kuçi S, Naumann I, Becker P, Kreyenberg H, Anzaghe M, Willasch A, Koehl U, Bug G, Ruthardt M, Klingebiel T, Fulda S, Bader P (2012) The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy 14(1):91–103

    Article  CAS  PubMed  Google Scholar 

  10. Durrieu L, Gregoire-Gauthier J, Dieng MM, Fontaine F, le Deist F, Haddad E (2012) Human interferon-alpha increases the cytotoxic effect of CD56(+) cord blood-derived cytokine-induced killer cells on human B-acute lymphoblastic leukemia cell lines. Cytotherapy 14(10):1245–1257

    Article  CAS  PubMed  Google Scholar 

  11. Marin V, Pizzitola I, Agostoni V, Attianese GMPG, Finney H, Lawson A, Pule M, Rousseau R, Biondi A, Biagi E (2010) Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors. Haematologica 95(12):2144–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schlimper C, Hombach AA, Abken H, Schmidt-Wolf IGH (2012) Improved activation toward primary colorectal cancer cells by antigen-specific targeting autologous cytokine-induced killer cells. Clin Dev Immunol 2012:238924

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zou Y, Li F, Hou W, Sampath P, Zhang Y, Thorne SH (2014) Manipulating the expression of chemokine receptors enhances delivery and activity of cytokine-induced killer cells. Br J Cancer 110(8):1992–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berger R, Rotem-Yehudar R, Slama G, Landes S, Kneller A, Leiba M, Koren-Michowitz M, Shimoni A, Nagler A (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051

    Article  CAS  PubMed  Google Scholar 

  15. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB, Kaminski MS, Holland HK, Winter JN, Mason JR, Fay JW, Rizzieri DA, Hosing CM, Ball ED, Uberti JP, Lazarus HM, Mapara MY, Gregory SA, Timmerman JM, Andorsky D et al (2013) Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 31(33):4199–4206

    Article  CAS  PubMed  Google Scholar 

  16. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, Rodig SJ, Chapuy B, Ligon AH, Zhu L, Grosso JF, Kim SY, Timmerman JM, Shipp MA, Armand P (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vey N, Bourhis JH, Boissel N, Bordessoule D, Prebet T, Charbonnier A, Etienne A, Andre P, Romagne F, Benson D, Dombret H, Olive D (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120(22):4317–4323

    Article  CAS  PubMed  Google Scholar 

  18. Benson DM, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagannath S, Abonour R, Bakan C, Andre P, Efebera Y, Tiollier J, Caligiuri MA, Farag SS (2012) A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120(22):4324–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alvarnas JC, Linn YC, Hope EG, Negrin RS (2001) Expansion of cytotoxic CD3+ CD56+ cells from peripheral blood progenitor cells of patients undergoing autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant 7(4):216–222

    Article  CAS  PubMed  Google Scholar 

  20. Linn YC, Lau SKJ, Liu BH, Ng LH, Yong HX, Hui KM (2009) Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell. Immunology 126(3):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franceschetti M, Pievani A, Borleri G, Vago L, Fleischhauer K, Golay J, Introna M (2009) Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp Hematol 37(5):616.e2–628.e2

    Article  Google Scholar 

  22. Linn YC, Wang SM, Hui KM (2005) Comparative gene expression profiling of cytokine-induced killer cells in response to acute myloid leukemic and acute lymphoblastic leukemic stimulators using oligonucleotide arrays. Exp Hematol 33(6):671–681

    Article  CAS  PubMed  Google Scholar 

  23. Zhang XG, Bataille R, Jourdan M, Saeland S, Banchereau J, Mannoni P, Klein B (1990) Granulocyte-macrophage colony-stimulating factor synergizes with interleukin-6 in supporting the proliferation of human myeloma cells. Blood 76(12):2599–2605

    CAS  PubMed  Google Scholar 

  24. Chan WC, Linn YC (2014) A comparison between cytokine- and bead-stimulated polyclonal T cells: the superiority of each and their possible complementary role. Cytotechnology. doi:10.1007/s10616-014-9825-x

    Google Scholar 

  25. Grosso J, Horak CE, Inzunza D, Cardona DM, Simon JS, Gupta AK, Sankar V, Park JS, Kollia G, Taube JM, Anders R, Jure-Kunkel M, Novotny JJ, Taylor CR, Zhang X, Phillips T, Simmons P, Cogswell J (2013) Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients (pts) with advanced solid tumors treated with nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol 31 (suppl; abstr 3016)

  26. Tamura H, Dan K, Tamada K, Nakamura K, Shioi Y, Hyodo H, Wang SD, Dong H, Chen L, Ogata K (2005) Expression of functional B7-H2 and B7.2 costimulatory molecules and their prognostic implications in de novo acute myeloid leukemia. Clin Cancer Res 11(16):5708–5717

    Article  CAS  PubMed  Google Scholar 

  27. Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, Kent SC, Zheng XX, Strom TB, Hafler DA, Kuchroo VK (2009) TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur J Immunol 39(9):2492–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Anderson AC (2014) Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res 2(5):393–398

    Article  CAS  PubMed  Google Scholar 

  29. Sierro S, Romero P, Speiser DE (2011) The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 15(1):91–101

    Article  CAS  PubMed  Google Scholar 

  30. Velders MP, ter Horst SA, Kast WM (2001) Prospect for immunotherapy of acute lymphoblastic leukemia. Leukemia 15(5):701–706

    Article  CAS  PubMed  Google Scholar 

  31. Baer MR, Stewart CC, Dodge RK, Leget G, Sulé N, Mrózek K, Schiffer CA, Powell BL, Kolitz JE, Moore JO, Stone RM, Davey FR, Carroll AJ, Larson RA, Bloomfield CD (2001) High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 97(11):3574–3580

    Article  CAS  PubMed  Google Scholar 

  32. van Bergen J, Koning F (2010) The tortoise and the hare: slowly evolving T-cell responses take hastily evolving KIR. Immunology 131(3):301–309

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gertner-Dardenne J, Fauriat C, Orlanducci F, Thibult ML, Pastor S, Fitzgibbon J, Bouabdallah R, Xerri L, Olive D (2013) The co-receptor BTLA negatively regulates human Vγ9Vδ2 T-cell proliferation: a potential way of immune escape for lymphoma cells. Blood 122(6):922–931

    Article  CAS  PubMed  Google Scholar 

  34. Fourcade J, Sun Z, Pagliano O, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V, Zarour HM (2012) CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res 72(4):887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. del Rio ML, Jones ND, Buhler L, Norris P, Shintani Y, Ware CF, Rodriguez-Barbosa JI (2012) Selective blockade of herpesvirus entry mediator-B and T lymphocyte attenuator pathway ameliorates acute graft-versus-host reaction. J Immunol 188(10):4885–4896

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rijkers ESK, de Ruiter T, Baridi A, Veninga H, Hoek RM, Meyaard L (2008) The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 45(4):1126–1135

    Article  CAS  PubMed  Google Scholar 

  37. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E, Moine P, Bourin P, Moos M, Corre J, Möhler T, De Vos J, Rossi JF, Goldschmidt H, Klein B (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 108(13):4194–4197

    Article  CAS  PubMed  Google Scholar 

  38. Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK, Darley RL (2007) CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21(3):566–568

    Article  CAS  PubMed  Google Scholar 

  39. Romanski A, Bug G, Becker S, Kampfmann M, Seifried E, Hoelzer D, Ottmann OG, Tonn T (2005) Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia. Exp Hematol 33(3):344–352

    Article  CAS  PubMed  Google Scholar 

  40. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sanborn RE, Sharfman WH, Segal NH, Hodi FS, Wolchok JD, Urba WJ, Fox BA, Topalian SL, Pardoll DM, Covello K, McDonald D, Kim SY, Gupta A, Wigginton JM, Gajewski TF (2014) A phase I dose-escalation and cohort expansion study of lirilumab (anti-KIR; BMS-986015) administered in combination with nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients (Pts) with advanced refractory solid tumors. J Clin Oncol 32 (suppl; abstr TPS3115)

  42. Rizvi NA, Infante JR, Gibney GT, Bertino EM, Cooley S, Lekatis K, Wigginton JM, Gutierrez AA, Gupta AK, Kim SY, Hodi FS (2013) A phase I study of lirilumab (BMS-986015), an anti-KIR monoclonal antibody, administered in combination with ipilimumab, an anti-CTLA4 monoclonal antibody, in patients (Pts) with select advanced solid tumors. J Clin Oncol 31 (suppl; abstr 3106)

  43. Nishimura R, Baker J, Beilhack A, Zeiser R, Olson JA, Sega EI, Karimi M, Negrin RS (2008) In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood 112(6):2563–2574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Introna M, Borleri G, Conti E, Franceschetti M, Barbui AM, Broady R, Dander E, Gaipa G, D’Amico G, Biagi E, Parma M, Pogliani EM, Spinelli O, Baronciani D, Grassi A, Golay J, Barbui T, Biondi A, Rambaldi A (2007) Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation: a phase I study. Haematologica 92(7):952–959

    Article  PubMed  Google Scholar 

  45. Laport GG, Sheehan K, Baker J, Armstrong R, Wong RM, Lowsky R, Johnston LJ, Shizuru JA, Miklos D, Arai S, Benjamin JE, Weng WK, Negrin RS (2011) Adoptive immunotherapy with cytokine-induced killer cells for patients with relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 17(11):1679–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhong RK, Loken M, Lane TA, Ball ED (2006) CTLA-4 blockade by a human mAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy 8(1):3–12

    Article  CAS  PubMed  Google Scholar 

  47. Linn YC, Yong HX, Niam M, Lim TJ, Chu S, Choong A, Chuah C, Goh YT, Hwang W, Loh Y, Ng HJ, Suck G, Chan M, Koh M (2012) A phase I/II clinical trial of autologous cytokine-induced killer cells as adjuvant immunotherapy for acute and chronic myeloid leukemia in clinical remission. Cytotherapy 14(7):851–859

    Article  CAS  PubMed  Google Scholar 

  48. Linn YC, Niam M, Chu S, Choong A, Yong HX, Heng KK, Hwang W, Loh Y, Goh YT, Suck G, Chan M, Koh M (2012) The anti-tumour activity of allogeneic cytokine-induced killer cells in patients who relapse after allogeneic transplant for haematological malignancies. Bone Marrow Transplant 47(7):957–966

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is funded by the Singapore General Hospital (SGH) Research Grant (2014). We thank the SGH Department of Haematology Tissue Repository for provision of patients’ samples; Bristol-Myers Squibb for their kind gifts of the mAbs ipilimumab, nivolumab, lirilumab and BMS-986016; and the SingHealth Legal Department for their assistance in the agreement for transfer of these mAbs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeh Ching Linn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poh, S.L., Linn, Y.C. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts. Cancer Immunol Immunother 65, 525–536 (2016). https://doi.org/10.1007/s00262-016-1815-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1815-8

Keywords

Navigation