Skip to main content
Log in

Overcoming the toxicity hurdles of genetically targeted T cells

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The recent successes of clinical trials with T cells genetically modified with either clonal T cell receptors or chimeric antigen receptors have also highlighted their potential toxicities. The aim of this focused review was to describe the adverse events observed in these clinical trials and to link them to the complex biology of genetically targeted T cells. Finally, strategies to overcome these toxicities will be proposed and discussed, including the use of suicide genes and other innovative gene therapy strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CAR:

Chimeric antigen receptor

CRS:

Cytokine-release syndrome

GCV:

Ganciclovir

GvHD:

Graft-versus-host disease

HSCT:

Hematopoietic stem cell transplantation

iC9:

Inducible caspase 9

mAb:

Monoclonal antibody

MAS:

Macrophage activation syndrome

scFv:

Single-chain fragment variable

TCR:

T cell receptor

TK:

Herpes simplex virus thymidine kinase

References

  1. Dotti G, Gottschalk S, Savoldo B, Brenner MK (2014) Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 257:107–126. doi:10.1111/imr.12131

    Article  CAS  PubMed  Google Scholar 

  2. Jensen MC, Riddell SR (2014) Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev 257:127–144. doi:10.1111/imr.12139

    Article  CAS  PubMed  Google Scholar 

  3. Maus MV, Grupp SA, Porter DL, June CH (2014) Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood 123:2625–2635. doi:10.1182/blood-2013-11-492231

    Article  CAS  PubMed  Google Scholar 

  4. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733. doi:10.1056/NEJMoa1103849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73. doi:10.1126/scitranslmed.3002842

  6. Brentjens RJ, Davila ML, Riviere I et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra138. doi: 10.1126/scitranslmed.3005930

  7. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518. doi:10.1056/NEJMoa1215134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924. doi:10.1200/JCO.2010.32.2537

    Article  PubMed Central  PubMed  Google Scholar 

  9. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129. doi:10.1126/science.1129003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546. doi:10.1182/blood-2009-03-211714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Parkhurst MR, Yang JC, Langan RC et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19:620–626. doi:10.1038/mt.2010.272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cameron BJ, Gerry AB, Dukes J et al (2013) Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 5:197ra103. doi:10.1126/scitranslmed.3006034

  13. Linette GP, Stadtmauer EA, Maus MV et al (2013) Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood 122:863–871. doi:10.1182/blood-2013-03-490565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bendle GM, Linnemann C, Hooijkaas AI et al (2010) Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med 16:565–570. doi:10.1038/nm.2128

    Article  CAS  PubMed  Google Scholar 

  15. Scholten KB, Kramer D, Kueter EW, Graf M, Schoedl T, Meijer CJ, Schreurs MW, Hooijberg E (2006) Codon modification of T cell receptors allows enhanced functional expression in transgenic human T cells. Clin Immunol 119:135–145. doi:10.1016/j.clim.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  16. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA (2006) Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 66:8878–8886. doi:10.1158/0008-5472.CAN-06-1450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD (2007) Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood 109:2331–2338. doi:10.1182/blood-2006-05-023069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Okamoto S, Mineno J, Ikeda H, Fujiwara H, Yasukawa M, Shiku H, Kato I (2009) Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res 69:9003–9011. doi:10.1158/0008-5472.CAN-09-1450

    Article  CAS  PubMed  Google Scholar 

  19. Provasi E, Genovese P, Lombardo A et al (2012) Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat Med 18:807–815. doi:10.1038/nm.2700

    Article  CAS  PubMed  Google Scholar 

  20. Hombach A, Hombach AA, Abken H (2010) Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response. Gene Ther 17:1206–1213. doi:10.1038/gt.2010.91

    Article  CAS  PubMed  Google Scholar 

  21. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, Gratama JW, Stoter G, Oosterwijk E (2006) Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24:e20–e22. doi:10.1200/JCO.2006.05.9964

    Article  PubMed  Google Scholar 

  22. Savoldo B, Ramos CA, Liu E et al (2011) CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J Clin Invest 121:1822–1826. doi:10.1172/JCI46110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851. doi:10.1038/mt.2010.24

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Morgan RA, Chinnasamy N, Abate-Daga D et al (2013) Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 36:133–151. doi:10.1097/CJI.0b013e3182829903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tettamanti S, Marin V, Pizzitola I et al (2013) Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol 161:389–401. doi:10.1111/bjh.12282

    Article  CAS  PubMed  Google Scholar 

  26. Gill S, Tasian SK, Ruella M et al (2014) Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123:2343–2354. doi:10.1182/blood-2013-09-529537

    Article  CAS  PubMed  Google Scholar 

  27. Casucci M, Nicolis di Robilant B, Falcone L et al (2013) CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 122:3461–3672. doi:10.1182/blood-2013-04-493361

    Article  CAS  PubMed  Google Scholar 

  28. Brentjens RJ, Riviere I, Park JH et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–4828. doi:10.1182/blood-2011-04-348540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Teachey DT, Rheingold SR, Maude SL et al (2013) Cytokine-release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121:5154–5157. doi:10.1182/blood-2013-02-485623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Barrett DM, Teachey DT, Grupp SA (2014) Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr 26:43–49. doi:10.1097/MOP.0000000000000043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ertl HC, Zaia J, Rosenberg SA, June CH, Dotti G, Kahn J, Cooper LJ, Corrigan-Curay J, Strome SE (2011) Considerations for the clinical application of chimeric antigen receptor T cells: observations from a recombinant DNA Advisory Committee Symposium held June 15, 2010. Cancer Res 71:3175–3181. doi:10.1158/0008-5472.CAN-10-4035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra225. doi:10.1126/scitranslmed.3008226

  33. Berger C, Flowers ME, Warren EH, Riddell SR (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107:2294–2302. doi:10.1182/blood-2005-08-3503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Traversari C, Marktel S, Magnani Z, Mangia P, Russo V, Ciceri F, Bonini C, Bordignon C (2007) The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood 109:4708–4715. doi:10.1182/blood-2006-04-015230

    Article  CAS  PubMed  Google Scholar 

  35. Jensen MC, Popplewell L, Cooper LJ, DiGiusto D, Kalos M, Ostberg JR, Forman SJ (2010) Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transpl 16:1245–1256. doi:10.1016/j.bbmt.2010.03.014

    Article  CAS  Google Scholar 

  36. Russo V, Bondanza A, Ciceri F, Bregni M, Bordignon C, Traversari C, Bonini C (2012) A dual role for genetically modified lymphocytes in cancer immunotherapy. Trends Mol Med 18:193–200. doi:10.1016/j.molmed.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  37. Bonini C, Ferrari G, Verzeletti S et al (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276:1719–1724

    Article  CAS  PubMed  Google Scholar 

  38. Ciceri F, Bonini C, Stanghellini MT et al (2009) Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol 10:489–500. doi:10.1016/S1470-2045(09)70074-9

    Article  PubMed  Google Scholar 

  39. Oliveira G, Greco R, Lupo-Stanghellini MT, Vago L (2012) Bonini C Use of TK-cells in haploidentical hematopoietic stem cell transplantation. Curr Opin Hematol 19:427–433. doi:10.1097/MOH.0b013e32835822f5

    Article  CAS  PubMed  Google Scholar 

  40. Garin MI, Garrett E, Tiberghien P, Apperley JF, Chalmers D, Melo JV, Ferrand C (2001) Molecular mechanism for ganciclovir resistance in human T lymphocytes transduced with retroviral vectors carrying the herpes simplex virus thymidine kinase gene. Blood 97:122–129

    Article  CAS  PubMed  Google Scholar 

  41. Chalmers D, Ferrand C, Apperley JF et al (2001) Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene. Mol Ther 4:146–148. doi:10.1006/mthe.2001.0433

    Article  CAS  PubMed  Google Scholar 

  42. Straathof KC, Pule MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, Heslop HE, Spencer DM, Rooney CM (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood 105:4247–4254. doi:10.1182/blood-2004-11-4564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365:1673–1683. doi:10.1056/NEJMoa1106152

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhou X, Di Stasi A, Tey SK et al (2014) Long-term outcome after haploidentical stem cell transplant and infusion of T cells expressing the inducible caspase 9 safety transgene. Blood 123:3895–3905. doi:10.1182/blood-2014-01-551671

    Article  CAS  PubMed  Google Scholar 

  45. Hoyos V, Savoldo B, Quintarelli C et al (2010) Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia 24:1160–1170. doi:10.1038/leu.2010.75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Beatty GL, Haas AR, Maus MV et al (2014) Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol Res 2:112–120. doi:10.1158/2326-6066.CIR-13-0170

    Article  CAS  PubMed  Google Scholar 

  47. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M (2013) Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 31:71–75. doi:10.1038/nbt.2459

    Article  CAS  PubMed  Google Scholar 

  48. Fedorov VD, Themeli M, Sadelain M (2013) PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med 5:215ra172. doi:10.1126/scitranslmed.3006597

Download references

Acknowledgments

This work has been funded by the Italian Association for Cancer Research (My First AIRC Grant to Attilio Bondanza and AIRC 5×1000 Special Program in Molecular Oncology Nr. 9965). Monica Casucci is a research fellow of the Italian Foundation for Cancer Research (FIRC).

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio Bondanza.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Eleventh Meeting of the Network Italiano per la Bioterapia dei Tumori (NIBIT) on Cancer Bio-Immunotherapy, held in Siena, Italy, 17th–19th October 2013. It is part of a CII series of Focussed Research Reviews and meeting report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casucci, M., Hawkins, R.E., Dotti, G. et al. Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol Immunother 64, 123–130 (2015). https://doi.org/10.1007/s00262-014-1641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1641-9

Keywords

Navigation