Skip to main content

Advertisement

Log in

Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In multiple myeloma (MM), bone marrow mesenchymal stromal cells (BM-MSCs) play an important role in pathogenesis and disease progression by supporting myeloma cell growth and immune escape. Previous studies have suggested that direct and indirect interactions between malignant cells and BM-MSCs result in constitutive abnormal immunomodulatory capacities in MM BM-MSCs. The aim of this study was to investigate the mechanisms that underlie these MM BM-MSCs abnormalities. We demonstrated that MM BM-MSCs exhibit abnormal expression of CD40/40L, VCAM1, ICAM-1, LFA-3, HO-1, HLA-DR and HLA-ABC. Furthermore, an overproduction of IL-6 (1,806 ± 152.5 vs 719.6 ± 18.22 ng/mL; p = 0.035) and a reduced secretion of IL-10 (136 ± 15.02 vs 346.4 ± 35.32 ng/mL; p = 0.015) were quantified in culture medium when MM BM-MSCs were co-cultured with T lymphocytes compared to co-cultures with healthy donor (HD) BM-MSCs. An increased Th17/Treg ratio was observed when T cells were co-cultured with MM BM-MSCs compared to co-cultures with HD BM-MSCs (0.955 vs 0.055). Together, these observations demonstrated that altered immunomodulation capacities of MM BM-MSCs were linked to variations in their immunogenicity and secretion profile. These alterations lead not only to a reduced inhibition of T cell proliferation but also to a shift in the Th17/Treg balance. We identified factors that are potentially responsible for these alterations, such as IL-6, VCAM-1 and CD40, which could also be associated with MM pathogenesis and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

BrdU:

5-Bromo-2-deoxy-uridine

CCL5:

Chemokine (C–C motif) ligand 5

CFSE:

Carboxyfluorescein succinimidyl ester

CM:

Conditioned medium

ELISA:

Enzyme-linked immunosorbent assay

FOXP3:

Forkhead box P3

HD:

Healthy donors

HGF:

Hepatocyte growth factor

HLA:

Human leukocyte antigen

HO-1:

Hemeoxygenase-1

ICAM-1:

Intercellular adhesion molecule-1

IFN:

Interferon

IL:

Interleukin

IL-23R:

Interleukin-23 receptor

LFA-3:

Lymphocyte function-associated antigen-3

MCP-1:

Monocyte chemotactic protein-1

MIP-1α:

Macrophage inflammatory protein-1 alpha

MLR:

Mixed lymphocyte reactions

MM:

Multiple myeloma

MMP:

Matrix metalloproteinase

MSC:

Mesenchymal stromal cell

PBMC:

Peripheral blood mononuclear cells

PCs:

Plasma cells

PGE2:

Prostaglandin E2

PHA:

Phytohemagglutinin

RORγt:

RAR-related orphan receptor gamma t

SEM:

Standard error of the mean

TGF:

Tumor growth factor

Th:

T helper cells

TNF:

Tumor necrosis factor

Treg:

T regulatory cells

VCAM-1:

Vascular cell adhesion molecule-1

References

  1. Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 351:1860–1873. doi:10.1056/NEJMra041875

    Article  CAS  PubMed  Google Scholar 

  2. Tucci M, Stucci S, Strippoli S, Dammacco F, Silvestris F (2011) Dendritic cells and malignant plasma cells: an alliance in multiple myeloma tumor progression? Oncologist 16:1040–1048. doi:10.1634/theoncologist.2010-0327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pratt G, Goodyear O, Moss P (2007) Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 138:563–579. doi:10.1111/j.1365-2141.2007.06705.x

    Article  CAS  PubMed  Google Scholar 

  4. Cook G, Campbell JD (1999) Immune regulation in multiple myeloma: the host–tumour conflict. Blood Rev 13:151–162. doi:10.1054/blre.1999.0111

    Article  CAS  PubMed  Google Scholar 

  5. Feyler S, von Lilienfeld-Toal M, Jarmin S, Marles L, Rawstron A, Ashcroft AJ, Owen RG, Selby PJ, Cook G (2009) CD4(+)CD25(+)FoxP3(+) regulatory T cells are increased whilst CD3(+)CD4(-)CD8(-)alphabetaTCR(+) Double Negative T cells are decreased in the peripheral blood of patients with multiple myeloma which correlates with disease burden. Br J Haematol 144:686–695. doi:10.1111/j.1365-2141.2008.07530.x

    Article  PubMed  Google Scholar 

  6. Favaloro J, Brown R, Aklilu E, Yang S, Suen H, Hart D, Fromm P, Gibson J, Khoo L, Ho PJ, Joshua D (2013) Myeloma skews Treg and Th17 cell balance in favor of a suppressive state. Leuk Lymphoma 55(5):1090–1098. doi:10.3109/10428194.2013.825905

    Article  PubMed  Google Scholar 

  7. Shen CJ, Yuan ZH, Liu YX, Hu GY (2012) Increased numbers of T helper 17 cells and the correlation with clinicopathological characteristics in multiple myeloma. J Int Med Res 40:556–564

    Article  CAS  PubMed  Google Scholar 

  8. Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne MN, Crinquette A, Dessoly J, Sciaini AK, Benbunan M, Chomienne C, Fermand JP, Marolleau JP, Larghero J (2007) Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21:158–163. doi:10.1038/sj.leu.2404466

    Article  CAS  PubMed  Google Scholar 

  9. Li B, Fu J, Chen P, Zhuang W (2010) Impairment in immunomodulatory function of mesenchymal stem cells from multiple myeloma patients. Arch Med Res 41:623–633. doi:10.1016/j.arcmed.2010.11.008

    Article  CAS  PubMed  Google Scholar 

  10. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  PubMed  Google Scholar 

  11. Ghannam S, Pene J, Torcy-Moquet G, Jorgensen C, Yssel H (2010) Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol 185:302–312. doi:10.4049/jimmunol.0902007

    Article  CAS  PubMed  Google Scholar 

  12. Carrion F, Nova E, Luz P, Apablaza F, Figueroa F (2011) Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation. Immunol Lett 135:10–16. doi:10.1016/j.imlet.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  13. English K, French A, Wood KJ (2010) Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell 7:431–442. doi:10.1016/j.stem.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  14. Andre T, Meuleman N, Stamatopoulos B, De BC, Pieters K, Bron D, Lagneaux L (2013) Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS One 8:e59756. doi:10.1371/journal.pone.0059756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, Bron D, Toungouz M, Martiat P, Lagneaux L (2009) Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy 11:570–583. doi:10.1080/14653240903079377

    Article  CAS  PubMed  Google Scholar 

  16. Horwitz EM, Le BK, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395. doi:10.1080/14653240500319234

    Article  CAS  PubMed  Google Scholar 

  17. Yellin MJ, Winikoff S, Fortune SM, Baum D, Crow MK, Lederman S, Chess L (1995) Ligation of CD40 on fibroblasts induces CD54 (ICAM-1) and CD106 (VCAM-1) up-regulation and IL-6 production and proliferation. J Leukoc Biol 58:209–216

    CAS  PubMed  Google Scholar 

  18. Dechanet J, Grosset C, Taupin JL, Merville P, Banchereau J, Ripoche J, Moreau JF (1997) CD40 ligand stimulates proinflammatory cytokine production by human endothelial cells. J Immunol 159:5640–5647

    CAS  PubMed  Google Scholar 

  19. O’Sullivan B, Thomas R (2003) CD40 and dendritic cell function. Crit Rev Immunol 23:83–107

    Article  PubMed  Google Scholar 

  20. Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM (2001) Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 91:1219–1230

    Article  CAS  PubMed  Google Scholar 

  21. Yang ZX, Han ZB, Ji YR, Wang YW, Liang L, Chi Y, Yang SG, Li LN, Luo WF, Li JP, Chen DD, Du WJ, Cao XC, Zhuo GS, Wang T, Han ZC (2013) CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties. PLoS One 8:e59354. doi:10.1371/journal.pone.0059354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Burkly LC, Jakubowski A, Newman BM, Rosa MD, Chi-Rosso G, Lobb RR (1991) Signaling by vascular cell adhesion molecule-1 (VCAM-1) through VLA-4 promotes CD3-dependent T cell proliferation. Eur J Immunol 21:2871–2875. doi:10.1002/eji.1830211132

    Article  CAS  PubMed  Google Scholar 

  23. Ren G, Zhao X, Zhang L, Zhang J, L’Huillier A, Ling W, Roberts AI, Le AD, Shi S, Shao C, Shi Y (2010) Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. J Immunol 184:2321–2328. doi:10.4049/jimmunol.0902023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Wakkach A, Cottrez F, Groux H (2001) Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J Immunol 167:3107–3113

    Article  CAS  PubMed  Google Scholar 

  25. Chabannes D, Hill M, Merieau E, Rossignol J, Brion R, Soulillou JP, Anegon I, Cuturi MC (2007) A role for heme oxygenase-1 in the immunosuppressive effect of adult rat and human mesenchymal stem cells. Blood 110:3691–3694. doi:10.1182/blood-2007-02-075481

    Article  CAS  PubMed  Google Scholar 

  26. Mougiakakos D, Jitschin R, Johansson CC, Okita R, Kiessling R, Le BK (2011) The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117:4826–4835. doi:10.1182/blood-2010-12-324038

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Zhang L, Wu J, Di C, Xia Z (2013) Heme oxygenase-1 exerts a protective role in ovalbumin-induced neutrophilic airway inflammation by inhibiting Th17 cell-mediated immune response. J Biol Chem 288:34612–34626. doi:10.1074/jbc.M113.494369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chan JL, Tang KC, Patel AP, Bonilla LM, Pierobon N, Ponzio NM, Rameshwar P (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107:4817–4824. doi:10.1182/blood-2006-01-0057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. doi:10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  30. Nasef A, Chapel A, Mazurier C, Bouchet S, Lopez M, Mathieu N, Sensebe L, Zhang Y, Gorin NC, Thierry D, Fouillard L (2007) Identification of IL-10 and TGF-beta transcripts involved in the inhibition of T-lymphocyte proliferation during cell contact with human mesenchymal stem cells. Gene Expr 13:217–226

    Article  PubMed  Google Scholar 

  31. Taga K, Mostowski H, Tosato G (1993) Human interleukin-10 can directly inhibit T-cell growth. Blood 81:2964–2971

    CAS  PubMed  Google Scholar 

  32. Annunziato F, Romagnani S (2009) Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther 11:257. doi:10.1186/ar2843

    Article  PubMed Central  PubMed  Google Scholar 

  33. Nakae S, Iwakura Y, Suto H, Galli SJ (2007) Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol 81:1258–1268. doi:10.1189/jlb.1006610

    Article  CAS  PubMed  Google Scholar 

  34. Cipriani P, Di BP, Liakouli V, Del PB, Di PM, Di IM, Marrelli A, Alesse E, Giacomelli R (2013) Mesenchymal stem cells (MSCs) from scleroderma patients (SSc) preserve their immunomodulatory properties although senescent and normally induce T regulatory cells (Tregs) with a functional phenotype: implications for cellular-based therapy. Clin Exp Immunol 173:195–206. doi:10.1111/cei.12111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Landgraf K, Brunauer R, Lepperdinger G, Grubeck-Loebenstein B (2011) The suppressive effect of mesenchymal stromal cells on T cell proliferation is conserved in old age. Transpl Immunol 25:167–172. doi:10.1016/j.trim.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  36. Danese S, Sans M, Fiocchi C (2004) The CD40/CD40L costimulatory pathway in inflammatory bowel disease. Gut 53:1035–1043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Massaia M, Bianchi A, Attisano C, Peola S, Redoglia V, Dianzani U, Pileri A (1991) Detection of hyperreactive T cells in multiple myeloma by multivalent cross-linking of the CD3/TCR complex. Blood 78:1770–1780

    CAS  PubMed  Google Scholar 

  38. Urashima M, Chauhan D, Uchiyama H, Freeman GJ, Anderson KC (1995) CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 85:1903–1912

    CAS  PubMed  Google Scholar 

  39. Chauhan D, Li G, Shringarpure R, Podar K, Ohtake Y, Hideshima T, Anderson KC (2003) Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63:6174–6177

    CAS  PubMed  Google Scholar 

  40. Reinders ME, Sho M, Robertson SW, Geehan CS, Briscoe DM (2003) Proangiogenic function of CD40 ligand-CD40 interactions. J Immunol 171:1534–1541

    Article  CAS  PubMed  Google Scholar 

  41. Feuerbach D, Feyen JH (1997) Expression of the cell-adhesion molecule VCAM-1 by stromal cells is necessary for osteoclastogenesis. FEBS Lett 402:21–24. doi:10.1016/S0014-5793(96)01495-0

    Article  CAS  PubMed  Google Scholar 

  42. Wu TC (2007) The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 67:6003–6006. doi:10.1158/0008-5472.CAN-07-1543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Landowski TH, Olashaw NE, Agrawal D, Dalton WS (2003) Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 22:2417–2421. doi:10.1038/sj.onc.1206315

    Article  CAS  PubMed  Google Scholar 

  44. Dhodapkar KM, Barbuto S, Matthews P, Kukreja A, Mazumder A, Vesole D, Jagannath S, Dhodapkar MV (2008) Dendritic cells mediate the induction of polyfunctional human IL17-producing cells (Th17-1 cells) enriched in the bone marrow of patients with myeloma. Blood 112:2878–2885. doi:10.1182/blood-2008-03-143222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I (2010) A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 116:3554–3563. doi:10.1182/blood-2010-05-283895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bryant C, Suen H, Brown R, Yang S, Favaloro J, Aklilu E, Gibson J, Ho PJ, Iland H, Fromm P, Woodland N, Nassif N, Hart D, Joshua DE (2013) Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer J 3:e148. doi:10.1038/bcj.2013.34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20:4519–4527. doi:10.1038/sj.onc.1204623

    Article  CAS  PubMed  Google Scholar 

  48. Payvandi F, Wu L, Haley M, Schafer PH, Zhang LH, Chen RS, Muller GW, Stirling DI (2004) Immunomodulatory drugs inhibit expression of cyclooxygenase-2 from TNF-alpha, IL-1beta, and LPS-stimulated human PBMC in a partially IL-10-dependent manner. Cell Immunol 230:81–88. doi:10.1016/j.cellimm.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  49. Noonan K, Rudraraju L, Ferguson A, Emerling A, Pasetti MF, Huff CA, Borrello I (2012) Lenalidomide-induced immunomodulation in multiple myeloma: impact on vaccines and antitumor responses. Clin Cancer Res 18:1426–1434. doi:10.1158/1078-0432.CCR-11-1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant provided by the “Fonds de la Recherche Scientifique—Fonds National de la Recherche Scientifique” (FRS-FNRS of Belgium—Grant-Télévie FC79946) and by a fund Granted by “Les Amis de l’Institut Bordet.”

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaud André.

Additional information

Thibaud André and Mehdi Najar have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

André, T., Najar, M., Stamatopoulos, B. et al. Immune impairments in multiple myeloma bone marrow mesenchymal stromal cells. Cancer Immunol Immunother 64, 213–224 (2015). https://doi.org/10.1007/s00262-014-1623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-014-1623-y

Keywords

Navigation