Skip to main content

Advertisement

Log in

Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Classical MHC molecules present processed peptides from endogenous protein antigens on the cell surface, which allows CD8+ cytotoxic T lymphocytes (CTLs) to recognize and respond to the abnormal antigen repertoire of hazardous cells, including tumor cells. The light chain, β2-microglobulin (β2m), is an essential constant component of all trimeric MHC class I molecules. There is convincing evidence that β2m deficiency generates immune escape phenotypes in different tumor entities, with an exceptionally high frequency in colorectal carcinoma (CRC) and melanoma. Damage of a single β2m gene by LOH on chromosome 15 may be sufficient to generate a tumor cell precommitted to escape. In addition, this genetic lesion is followed in some tumors by a mutation of the second gene (point mutation or insertion/deletion), which produces a tumor cell unable to express any HLA class I molecule. The pattern of mutations found in microsatellite unstable colorectal carcinoma (MSI-H CRC) and melanoma showed a striking similarity, namely the predominance of frameshift mutations in repetitive CT elements. This review emphasizes common but also distinct molecular mechanisms of β2m loss in both tumor types. It also summarizes recent studies that point to an acquired β2m deficiency in response to cancer immunotherapy, a barrier to successful vaccination or adoptive cellular therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

β2m:

β2-microglobulin

CRC:

Colorectal cancer

HLA:

Human leukocyte antigen

MHC:

Major histocompatibility complex

LOH:

Loss of heterozygosity

MMR:

Mismatch repair

MSI-H:

High microsatellite instability

MSS:

Microsatellite stability

References

  1. Coulie PG, Karanikas V, Lurquin C, Colau D, Connerotte T, Hanagiri T, Van Pel A, Lucas S, Godelaine D, Lonchay C, Marchand M, Van Baren N, Boon T (2002) Cytolytic T-cell responses of cancer patients vaccinated with a MAGE antigen. Immunol Rev 188:33–42

    Article  PubMed  CAS  Google Scholar 

  2. Wang E, Worschech A, Marincola FM (2008) The immunologic constant of rejection. Trends Immunol 29:256–262

    Article  PubMed  Google Scholar 

  3. Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18:89–95

    Article  PubMed  CAS  Google Scholar 

  4. del Campo Ana B, Carretero J, Aptsiauri N, Garrido F (2012) Targeting tumor HLA class I expression to increase tumor immunogenicity. Tissue Antigens 79:147–154

    Article  PubMed  Google Scholar 

  5. Rosa F, Berissi H, Weissenbach J, Maroteaux L, Fellous M, Revel M (1983) The β2m mRNA in human Daudi cells has a mutated initiation codon but is still inducible by interferon. EMBO J 2:239–243

    PubMed  CAS  Google Scholar 

  6. Benitez R, Godelaine D, Lopez-Nevot MA, Brasseur F, Jiménez P, Marchand M, Oliva MR, van Baren N, Cabrera T, Andry G, Landry C, Ruiz-Cabello F, Boon T, Garrido F (1998) Mutations of the beta2-microglobulin gene result in a lack of HLA class I molecules on melanoma cells of two patients immunized with MAGE peptides. Tissue Antigens 52:520–529

    Article  PubMed  CAS  Google Scholar 

  7. Pérez B, Benitez R, Fernández MA, Oliva MR, Soto JL, Serrano S, López Nevot MA, Garrido F (1999) A new beta 2 microglobulin mutation found in a melanoma tumor cell line. Tissue Antigens 53:569–572

    Article  PubMed  Google Scholar 

  8. Paschen A, Méndez RM, Jimenez P, Sucker A, Ruiz-Cabello F, Song M, Garrido F, Schadendorf D (2003) Complete loss of HLA class I antigen expression on melanoma cells: a result of successive mutational events. Int J Cancer 103:759–767

    Article  PubMed  CAS  Google Scholar 

  9. D’Urso CM, Wang ZG, Cao Y, Tatake R, Zeff RA, Ferrone S (1991) Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in Β2m gene expression. J Clin Invest 87:284–292

    Article  PubMed  Google Scholar 

  10. Browning M, Petronzelli F, Bicknell D, Krausa P, Rowan A, Tonks S, Murray N, Bodmer J, Bodmer W (1996) Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue Antigens 47:364–371

    Article  PubMed  CAS  Google Scholar 

  11. Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA, Garrido F (2011) Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 63:65–71

    Article  PubMed  CAS  Google Scholar 

  12. Romero JM, Jiménez P, Cabrera T, Cózar JM, Pedrinaci S, Tallada M, Garrido F, Ruiz-Cabello F (2005) Coordinated downregulation of the antigen presentation machinery and HLA class I/β2m complex is responsible for HLA-ABC loss in bladder cancer. Int J Cancer 113:605–610

    Article  PubMed  CAS  Google Scholar 

  13. Blades RA, Keating PJ, McWilliam LJ, George NJ, Stern PL (1995) Loss of HLA class I expression in prostate cancer: implications for immunotherapy. Urology 46:681–686

    Article  PubMed  CAS  Google Scholar 

  14. Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P (1996) Selection for beta 2-microglobulin mutation in mismatch repair-defective colorectal carcinomas. Curr Biol 6:1695–1697

    Article  PubMed  CAS  Google Scholar 

  15. Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  PubMed  CAS  Google Scholar 

  16. Umar A, Kunkel TA (1996) DNA-replication fidelity, mismatch repair and genome instability in cancer cells. Eur J Biochem 238:297–307

    Article  PubMed  CAS  Google Scholar 

  17. Imai K, Yamamoto H (2008) Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 29:673–680

    Article  PubMed  CAS  Google Scholar 

  18. Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Rüschoff J (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756

    PubMed  CAS  Google Scholar 

  19. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN, Srivastava S (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  20. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N, Issa JP, Markowitz S, Willson JK, Hamilton SR, Kinzler KW, Kane MF, Kolodner RD, Vogelstein B, Kunkel TA, Baylin SB (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A 95:6870–6875

    Article  PubMed  CAS  Google Scholar 

  21. Lagerstedt Robinson K, Liu T, Vandrovcova J, Halvarsson B, Clendenning M, Frebourg T, Papadopoulos N, Kinzler KW, Vogelstein B, Peltomäki P, Kolodner RD, Nilbert M, Lindblom A (2007) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99:291–299

    Article  PubMed  Google Scholar 

  22. Speicher MR (1995) Microsatellite instability in human cancer. Oncol Res 7:267–275

    PubMed  CAS  Google Scholar 

  23. Bichara M, Pinet I, Schumacher S, Fuchs RP (2000) Mechanisms of dinucleotide repeat instability in Escherichia coli. Genetics 154:533–542

    PubMed  CAS  Google Scholar 

  24. Kloor M, Michel S, Buckowitz B, Rüschoff J, Büttner R, Holinski-Feder E, Dippold W, Wagner R, Tariverdian M, Benner A, Schwitalle Y, Kuchenbuch B, von Knebel Doeberitz M (2007) Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer 121:454–458

    Article  PubMed  CAS  Google Scholar 

  25. Cabrera CM, Jiménez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F (2003) Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: β2m inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens 6:211–219

    Article  Google Scholar 

  26. Hicklin DJ, Wang Z, Arienti F, Rivoltini L, Parmiani G, Ferrone S (1998) Beta2-Microglobulin mutations, HLA class I antigen loss, and tumor progression in melanoma. J Clin Invest 101:2720–2729

    Article  PubMed  CAS  Google Scholar 

  27. Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S (2005) Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol 174:1462–1471

    PubMed  CAS  Google Scholar 

  28. Hsieh CH, Hsu YJ, Chang CC, Liu HC, Chuang KL, Chuang CK, Pang ST, Hasumi K, Ferrone S, Liao SK (2009) Total HLA class I loss in a sarcomatoid renal carcinoma cell line caused by the coexistence of distinct mutations in the two encoding β2m genes. Cancer Immunol Immunother 58:395–408

    Article  PubMed  CAS  Google Scholar 

  29. Jordanova ES, Riemersma SA, Philippo K, Schuuring E, Kluin PM (2003) Beta2-microglobulin aberrations in diffuse large B-cell lymphoma of the testis and the central nervous system. Int J Cancer 103:393–398

    Article  PubMed  CAS  Google Scholar 

  30. Koopman LA, Corver WE, van der Slik AR, Giphart MJ, Fleuren GJ (2000) Multiple genetic alterations cause frequent and heterogeneous human histocompatibility leukocyte antigen class I loss in cervical cancer. J Exp Med 191:961–976

    Article  PubMed  CAS  Google Scholar 

  31. Tomlinson IP, Beck NE, Bodmer WF (1996) Allele loss on chromosome 11q and microsatellite instability in malignant melanoma. Eur J Cancer 32:1797–1802

    Article  Google Scholar 

  32. Birindelli S, Tragni G, Bartoli C, Ranzani GN, Rilke F, Pierotti MA, Pilotti S (2000) Detection of microsatellite alterations in the spectrum of melanocytic nevi in patients with or without individual or family history of melanoma. Int J Cancer 86:255–261

    Article  PubMed  CAS  Google Scholar 

  33. Hussein MR, Sun M, Tuthill RJ, Roggero E, Monti JA, Sudilovsky EC, Wood GS, Sudilovsky O (2001) Comprehensive analysis of 112 melanocytic skin lesions demonstrates microsatellite instability in melanomas and dysplastic nevi, but not in benign nevi. J Cutan Pathol 28:343–350

    Article  PubMed  CAS  Google Scholar 

  34. Palmieri G, Ascierto PA, Cossu A, Colombino M, Casula M, Botti G, Lissia A, Tanda F, Castello G (2003) Assessment of genetic instability in melanocytic skin lesions through microsatellite analysis of benign naevi, dysplastic naevi, and primary melanomas and their metastases. Melanoma Res 13:167–170

    Article  PubMed  CAS  Google Scholar 

  35. Hussein MR (2004) Genetic pathways to melanoma tumorigenesis. J Clin Pathol 57:797–801

    Article  PubMed  CAS  Google Scholar 

  36. Bicknell DC, Rowant A, Bodmer WF (1994) β2-Microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors. Proc Natl Acad Sci USA 91:4751–4755

    Article  PubMed  CAS  Google Scholar 

  37. Paschen A, Arens N, Sucker A, Greulich-Bode KM, Fonsatti E, Gloghini A, Striegel S, Schwinn N, Carbone A, Hildenbrand R, Cerwenka A, Maio M, Schadendorf D (2006) The coincidence of chromosome 15 aberrations and β2m gene mutations is causative for the total loss of human leukocyte antigen class I expression in melanoma. Clin Cancer Res 12:3297–3305

    Article  PubMed  CAS  Google Scholar 

  38. Di Noia J, Neuberger M (2007) Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22

    Article  PubMed  Google Scholar 

  39. Kim CJ, Song JH, Cho YG, Cao Z, Kim SY, Nam SW, Lee JY, Park WS (2007) Activation-induced cytidine deaminase expression in gastric cancer. Tumour Biol 28:333–339

    Article  PubMed  CAS  Google Scholar 

  40. Marusawa H, Aberrant AID (2008) Expression and human cancer development. Int J Biochem Cell Biol 40:1399–1402

    Article  PubMed  CAS  Google Scholar 

  41. Shivarov V, Shinkura R, Doi T, Begum NA, Nagaoka H, Okazaki IM, Ito S, Nonaka T, Kinoshita K, Honjo T (2009) Molecular mechanism for generation of antibody memory. Philos Trans R Soc Lond B Biol Sci 364:569–575

    Article  PubMed  CAS  Google Scholar 

  42. Del Campo A, Mendez R, Carretero J, Maleno I, Zinchenko S, Ruiz-Cabello F, Kyte JA, Aamdal S, Gaudernak G, Aptsiauri N, Garrido F (2010) Analysis of HLA class I expression in metastatic lesions obtained from a melanoma patient before and after treatment with tumor-mRNA-transfected DCs: immunoselection of cells with beta 2-microglobulin gene alterations. Tissue Antigens 75:488

    Google Scholar 

  43. Marusawa H, Aberrant AID (2008) Expression and human cancer development. Int J Biochem Cell Biol 40:1399–1402

    Article  PubMed  CAS  Google Scholar 

  44. Carretero R, Romero JM, Ruiz-Cabello F, Maleno I, Rodriguez F, Camacho FM, Real LM, Garrido F, Cabrera T (2008) Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60:439–447

    Article  PubMed  CAS  Google Scholar 

  45. Carretero R, Wang E, Rodriguez AI, Reinboth J, Ascierto ML, Engle AM, Liu H, Camacho FM, Marincola FM, Garrido F, Cabrera T (2012) Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int J Cancer 131:387–395

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Lora A, Martinez M, Algarra I, Gaforio JJ, Garrido F (2003) MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components. Int J Cancer 106:521–527

    Article  PubMed  CAS  Google Scholar 

  47. Garcia-Lora A, Algarra I, Gaforio JJ, Ruiz-Cabello F, Garrido F (2001) Immunoselection by T lymphocytes generates repeated MHC class I-deficient metastatic tumor variants. Int J Cancer 91:109–119

    Article  PubMed  CAS  Google Scholar 

  48. Kloor M, Becker C, Benner A, Woerner SM, Gebert J, Ferrone S, von Knebel Doeberitz M (2005) Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res 65:6418–6424

    Article  PubMed  CAS  Google Scholar 

  49. Drake CG, Jaffee E, Pardoll DM (2006) Mechanisms of immune evasion by tumors. Adv Immunol 90:51–81

    Article  PubMed  CAS  Google Scholar 

  50. Garrido F, Cabrera T, Aptsiauri N (2010) “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127:249–256

    PubMed  CAS  Google Scholar 

  51. Seliger B, Ruiz-Cabello F, Garrido F (2008) IFN inducibility of major histocompatibility antigens in tumors. Adv Cancer Res 101:249–276

    Article  PubMed  CAS  Google Scholar 

  52. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Reexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2’-deoxycytidine treatment. Int J Cancer 94:243–251

    Article  PubMed  CAS  Google Scholar 

  53. Rodriguez T, Mendez R, del Campo A, Jimenez P, Aptsiauri N, Garrido F, Ruiz-Cabello F (2007) Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines. BMC Cancer 7:34

    Article  PubMed  Google Scholar 

  54. Khan AN, Gregorie CJ (2008) Tomasi TB Histone deacetylase inhibitors induce TAP, LMP, Tapasin genes and MHC class I antigen presentation by melanoma cells. Cancer Immunol Immunother 57:647–654

    Article  PubMed  CAS  Google Scholar 

  55. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JR, Rosenberg SA (1996) Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J Natl Cancer Inst 88:100

    Article  PubMed  CAS  Google Scholar 

  56. Carretero R, Cabrera T, Gil H, Saenz-Lopez P, Maleno I, Aptsiauri N, Cozar JM, Garrido F (2011) Bacillus Calmette-Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class I-deficient tumor cells. Int J Cancer 129:839–846

    Article  PubMed  CAS  Google Scholar 

  57. Woerner SM, Yuan YP, Benner A, Korff S, von Knebel Doeberitz M, Bork P (2010) SelTarbase, a database of human mononucleotide microsatellite mutations and their potential impact to tumorigenesis and immunology. Nucleic Acids Res 38 (Database issue):D682–D689

  58. Yamamoto H, Sawai H, Perucho M (1997) Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 57:4420–4426

    PubMed  CAS  Google Scholar 

  59. del Campo AB, Aptsiauri N, Mendez R, Zinchenko S, Vales A, Paschen A, Ward S, Ruiz-Cabello F, Gonzalez-Aseguinolaza G, Garrido F (2009) Efficient recovery of HLA class I expression in human tumor cells after β2m gene transfer using adenoviral vector: implications for cancer immunotherapy. Scand J Immunol 70:125–135

    Article  PubMed  Google Scholar 

  60. Perez M, Algarra I, Ljunggren HG, Caballero A, Mialdea MJ, Gaforio JJ, Klein G, Karre K, Garrido F (1990) A weakly tumorigenic phenotype with high MHC class-I expression is associated with high metastatic potential after surgical removal of the primary murine fibrosarcoma. Int J Cancer 46:258–261

    Article  PubMed  CAS  Google Scholar 

  61. Garrido ML, Perez M, Delgado C, Rojano J, Algarra I, Garrido A, Garrido F (1986) Immunogenicity of H-2 positive and H-2 negative clones of a mouse tumour, GR9. J Immunogenet 13:159–167

    Article  PubMed  CAS  Google Scholar 

  62. Jager MJ, Hurks HM, Levitskaya J, Kiessling R (2002) HLA expression in uveal melanoma:there is no rule without some exception. Human Immunol 63:444–451

    Article  CAS  Google Scholar 

  63. Ma D, Luyten GP, Luider TM, Niederkorn JY (1994) Relationship between natural killer cell susceptibility and metastasis of human uveal melanoma cells in a murine model. Invest Ophthalmol Vis Sci 36:435–441

    Google Scholar 

  64. Tikidzhieva A, Benner A, Michel S, Formentini A, Link K-H, Dippold W, von Knebel Doeberitz M, Kornmann M, Kloor M (2012) Microsatellite instability and beta2-microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer 106:1239–1245

    Article  PubMed  CAS  Google Scholar 

  65. Watson NF, Madjd Z, Splendlove I, Ellis IO, Scholefield JH, Durant LG (2006) Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with poor prognosis. Int J Cancer 118:6–10

    Article  PubMed  CAS  Google Scholar 

  66. Josson S, Nomura T, Lin JT, Huang WC, Wu D, Zhau HE, Zayzafoon M, Weizmann MN, Gururajan M, Chung LW (2011) b2-Microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Res 71:2600–2610

    Article  PubMed  CAS  Google Scholar 

  67. Huang WC, Wu D, Xie Z, Zhau HE, Nomura T, Zayzafoon M, Pohl J, Hsieh CL, Weitzmann MN, Farach-Carson MC, Chung LW (2006) beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. Cancer Res 66:9108–9116

    Article  PubMed  CAS  Google Scholar 

  68. Huang WC, Zhau HE, Chung LW (2010) Androgen receptor survival signalling is blocked by anti-{beta}2-microglobulin monoclonal antibody via a mitogen-activated protein kinase/lipogenic pathway in human prostate cancer cells. J Biol Chem 285:7947–7956

    Article  PubMed  CAS  Google Scholar 

  69. Chen H, Gabrilovich D, Virmanii A, Ratnani I, Girgis K, Nadaf-Rahrovm S, Fernandez-Viña M, Carbone P (1996) Structural and functional analysis of β2 microglobulin abnormalities in human lung and breast cancer. Int J Cancer 67:756–763

    Article  PubMed  CAS  Google Scholar 

  70. De Miranda NF, Nielsen M, Pereira D, van Puijenbroek M, Vasen HF, Hes FJ, van Wezel T, Morreau H (2009) MUTYH-associated polyposis carcinomas frequently lose HLA class I expression—a common event amongst DNA-repair-deficient colorectal cancers. J Pathol 219:69–76

    Article  PubMed  Google Scholar 

  71. Bernal M, Concha A, Sáenz-López P, Rodríguez AI, Cabrera T, Garrido F, Ruiz-Cabello F (2011) Leukocyte infiltrate in gastrointestinal adenocarcinomas is strongly associated with tumor microsatellite instability but not with tumor immunogenicity. Cancer Immunol Immunother 60:869–882

    Article  PubMed  CAS  Google Scholar 

  72. Gattoni-Celli S, Kirsch K, Timpane R, Isselbacher KJ (1992) Beta 2-microglobulin gene is mutated in a human colon cancer cell line (HCT) deficient in the expression of HLA class I antigens on the cell surface. Cancer Res 52:1201–1204

    PubMed  CAS  Google Scholar 

  73. Wang Z, Cao Y, Albino AP, Zeff RA, Houghton A, Ferrone S (1993) Lack of HLA class I antigen expression by melanoma cells SK-MEL-33 caused by a reading frameshift in beta 2-microglobulin messenger RNA. J Clin Invest 91:684–692

    Article  PubMed  CAS  Google Scholar 

  74. Chang CC, Ogino T, Mullins DW, Oliver JL, Yamshchikov GV, Bandoh N, Slingluff CL Jr, Ferrone S (2006) Defective human leukocyte antigen class I-associated antigen presentation caused by a novel β2m loss-of-function in melanoma cells. J Biol Chem 281:18763–18773

    Article  PubMed  CAS  Google Scholar 

  75. Baba T, Hanagiri T, Ichiki Y, Kuroda K, Shigematsu Y, Mizukami M, Sugaya M, Takenoyama M, Sugio K, Yasumoto K (2007) Lack and restoration of sensitivity of lung cancer cells to cellular attack with special reference to expression of human leukocyte antigen class I and/or major histocompatibility complex class I chain related molecules A/B. Cancer Sci 98:1795–1802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr Natalia Aptsiauri for helpful discussions and suggestions, to Dr Isabel Maleno for helping in the preparation of the manuscript, and to Eva García and Ana Isabel Rodríguez for technical assistance. They also thank the Tumor-Tissue Biobank of Virgen de las Nieves University Hospital for providing samples. The study was partially supported by grants from the Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Red Genómica del Cáncer (RETICRD 06/020), Consejería de Salud de la Junta de Andalucía, Consejería de Innovación, Ciencia y Empresa Junta de Andalucía, (P08-TIC-4299), Dirección General de Investigación y Gestión del Plan Nacional I + D + i (TIN2009-13489), Proyecto de Investigación de Excelencia (CTS-3952, CVI-4740 and P06/-CTS-02200), and Plan Andaluz de Investigación (PAI, Group CTS) in Spain; and from the European Searchable Tumour Cell Line Database (ESTDAB) project (contract No. QLRI-CT-2001-01325) at http://www.ebi.ac.uk/estdab, the European Network for the identification and validation of antigens and biomarkers in cancer and their application in clinical tumor immunology (ENACT) project (European community LSHC-CT-2004-503306), and the Cancer Immunotherapy project (European community OJ 2004/c158,18234) and the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF) “Alliance on Immunotherapy of Cancer”.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal, M., Ruiz-Cabello, F., Concha, A. et al. Implication of the β2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 61, 1359–1371 (2012). https://doi.org/10.1007/s00262-012-1321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1321-6

Keywords

Navigation