Skip to main content

Advertisement

Log in

Analysis of pre-treatment markers predictive of treatment benefit for the therapeutic cancer vaccine MVA-5T4 (TroVax)

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Cancer vaccines such as MVA-5T4 (TroVax®) must induce an efficacious immune response to deliver therapeutic benefit. The identification of biomarkers that impact on the clinical and/or immunological efficacy of cancer vaccines is required in order to select patients who are most likely to benefit from this treatment modality. Here, we sought to identify a predictor of treatment benefit for renal cancer patients treated with MVA-5T4. Statistical modeling was undertaken using data from a phase III trial in which patients requiring first-line treatment for metastatic renal cell carcinoma were randomized 1:1 to receive MVA-5T4 or placebo alongside sunitinib, IL-2 or IFN-α. Numerous pre-treatment factors associated with inflammatory anemia (e.g., CRP, hemoglobin, hematocrit, IL-6, ferritin, platelets) demonstrated a significant relationship with tumor burden and patient survival. From these prognostic factors, the pre-treatment mean corpuscular hemoglobin concentration (MCHC) was found to be the best predictor of treatment benefit (P < 0.01) for MVA-5T4 treated patients and also correlated positively with tumor shrinkage (P < 0.001). Furthermore, MCHC levels showed a significant positive association with 5T4 antibody response (P = 0.01). The latter result was confirmed using an independent data set comprising phase II trials of MVA-5T4 in patients with colorectal, renal and prostate cancers. Retrospective analyses demonstrated that RCC patients who had very large tumor burdens and low MCHC levels received little or no benefit from treatment with MVA-5T4; however, patients with smaller tumor burdens and normal MCHC levels received substantial benefit from treatment with MVA-5T4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hole N, Stern PL (1988) A 72 kD trophoblast glycoprotein defined by a monoclonal antibody. Br J Cancer 57:239–246

    Article  PubMed  CAS  Google Scholar 

  2. Southall PJ, Boxer GM, Bagshawe KD et al (1990) Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer 61:89–95

    Article  PubMed  CAS  Google Scholar 

  3. Starzynska T, Marsh PJ, Schofield PF et al (1994) Prognostic significance of 5T4 oncofetal antigen expression in colorectal carcinoma. Br J Cancer 69:899–902

    Article  PubMed  CAS  Google Scholar 

  4. Damelin M, Geles KG, Follettie MT et al (2011) Delineation of a cellular hierarchy in lung cancer reveals an oncofetal antigen expressed on tumor-initiating cells. Cancer Res 71:4236–4246

    Article  PubMed  CAS  Google Scholar 

  5. Amato RJ, Hawkins RE, Kaufman HL et al (2010) Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 16:5539–5547

    Article  PubMed  CAS  Google Scholar 

  6. Amato RJ, Shingler W, Goonewardena M et al (2009) Vaccination of renal cell cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) alone or administered in combination with interferon-alpha (IFN-alpha): a phase 2 trial. J Immunother 32:765–772

    Article  PubMed  CAS  Google Scholar 

  7. Amato RJ, Shingler W, Naylor S et al (2008) Vaccination of renal cell cancer patients with modified vaccinia ankara delivering tumor antigen 5T4 (TroVax) administered with interleukin 2: a phase II trial. Clin Cancer Res 14:7504–7510

    Article  PubMed  CAS  Google Scholar 

  8. Hawkins RE, Macdermott C, Shablak A et al (2009) Vaccination of patients with metastatic renal cancer with modified vaccinia Ankara encoding the tumor antigen 5T4 (TroVax) given alongside interferon-alpha. J Immunother 32:424–429

    Article  PubMed  CAS  Google Scholar 

  9. Kaufman HL, Taback B, Sherman W et al (2009) Phase II trial of Modified Vaccinia Ankara (MVA) virus expressing 5T4 and high dose Interleukin-2 (IL-2) in patients with metastatic renal cell carcinoma. J Transl Med 7:2

    Article  PubMed  Google Scholar 

  10. Elkord E, Dangoor A, Drury NL et al (2008) An MVA-based vaccine targeting the oncofetal antigen 5T4 in patients undergoing surgical resection of colorectal cancer liver metastases. J Immunother 31:820–829

    Article  PubMed  CAS  Google Scholar 

  11. Harrop R, Connolly N, Redchenko I et al (2006) Vaccination of colorectal cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax) induces immune responses which correlate with disease control: a phase I/II trial. Clin Cancer Res 12:3416–3424

    Article  PubMed  CAS  Google Scholar 

  12. Harrop R, Drury N, Shingler W et al (2008) Vaccination of colorectal cancer patients with TroVax given alongside chemotherapy (5-fluorouracil, leukovorin and irinotecan) is safe and induces potent immune responses. Cancer Immunol Immunother 57:977–986

    Article  PubMed  CAS  Google Scholar 

  13. Harrop R, Drury N, Shingler W et al (2007) Vaccination of colorectal cancer patients with modified vaccinia ankara encoding the tumor antigen 5T4 (TroVax) given alongside chemotherapy induces potent immune responses. Clin Cancer Res 13:4487–4494

    Article  PubMed  CAS  Google Scholar 

  14. Amato RJ, Drury N, Naylor S et al (2008) Vaccination of prostate cancer patients with modified vaccinia Ankara delivering the tumor antigen 5T4 (TroVax): a phase 2 trial. J Immunother 31:577–585

    Article  PubMed  CAS  Google Scholar 

  15. Harrop R, Shingler W, Kelleher M et al (2010) Cross-trial analysis of immunologic and clinical data resulting from phase I and II trials of MVA-5T4 (TroVax) in colorectal, renal, and prostate cancer patients. J Immunother 33:999–1005

    Article  PubMed  CAS  Google Scholar 

  16. Harrop R, Shingler WH, McDonald M et al (2011) MVA-5T4-induced immune responses are an early marker of efficacy in renal cancer patients. Cancer Immunol Immunother 60:829–837

    Article  PubMed  CAS  Google Scholar 

  17. Gulley JL, Arlen PM, Madan RA et al (2010) Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer. Cancer Immunol Immunother 59:663–674

    Article  PubMed  CAS  Google Scholar 

  18. Gulley JL, Drake CG (2011) Immunotherapy for prostate cancer: recent advances, lessons learned, and areas for further research. Clin Cancer Res 17:3884–3891

    Article  PubMed  CAS  Google Scholar 

  19. Gulley JL, Madan RA, Schlom J (2011) Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr Oncol 18:e150–e157

    Article  PubMed  CAS  Google Scholar 

  20. Dangoor A, Lorigan P, Keilholz U et al (2010) Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol Immunother 59:863–873

    Article  PubMed  CAS  Google Scholar 

  21. Hoos A, Britten CM, Huber C et al (2011) A methodological framework to enhance the clinical success of cancer immunotherapy. Nat Biotechnol 29:867–870

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong AJ, Eisenberger MA, Halabi S et al (2011) Biomarkers in the management and treatment of men with metastatic castration-resistant prostate cancer. Eur Urol 61:549–559

    Article  PubMed  Google Scholar 

  23. Boehm DU, Lebrecht A, Schmidt M et al (2007) Prognostic impact of haemoglobin levels in breast cancer. Anticancer Res 27:1223–1226

    PubMed  CAS  Google Scholar 

  24. Motzer RJ, Bacik J, Murphy BA et al (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20:289–296

    Article  PubMed  CAS  Google Scholar 

  25. Ganz T, Nemeth E (2009) Iron sequestration and anemia of inflammation. Semin Hematol 46:387–393

    Article  PubMed  CAS  Google Scholar 

  26. Weiss G, Goodnough LT (2005) Anemia of chronic disease. N Engl J Med 352:1011–1023

    Article  PubMed  CAS  Google Scholar 

  27. Brugnara C (2003) Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem 49:1573–1578

    Article  PubMed  CAS  Google Scholar 

  28. Chiarella P, Vulcano M, Bruzzo J et al (2008) Anti-inflammatory pretreatment enables an efficient dendritic cell-based immunotherapy against established tumors. Cancer Immunol Immunother 57:701–718

    Article  PubMed  CAS  Google Scholar 

  29. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    Article  PubMed  CAS  Google Scholar 

  30. Sheng KC, Wright MD, Apostolopoulos V (2011) Inflammatory mediators hold the key to dendritic cell suppression and tumor progression. Curr Med Chem 18:5507–5518

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

RH, JdB, MK, GB, SN and WS wish to disclose that they are employees of Oxford BioMedica, the manufacturer and developer of TroVax®. PT wishes to disclose that he has been paid consulting fees by Oxford BioMedica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Harrop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrop, R., Treasure, P., de Belin, J. et al. Analysis of pre-treatment markers predictive of treatment benefit for the therapeutic cancer vaccine MVA-5T4 (TroVax). Cancer Immunol Immunother 61, 2283–2294 (2012). https://doi.org/10.1007/s00262-012-1302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1302-9

Keywords

Navigation