Skip to main content

Advertisement

Log in

Involvement of eosinophils in the anti-tumor response

  • Symposium-in-writing paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Eosinophils have long been associated with allergy and parasitic infections. Today, they are considered as multifunctional leukocytes, which participate both in innate and adaptive immune response though the expression of various receptors and mediators. Although the tumor-associated eosinophilia is observed for a long time in many hematological and solid malignancies, with a generally good prognosis value, there is a lack of knowledge on the different mechanisms involved in this phenomenon. Moreover, the recent discovery in human eosinophils of different receptors and mediators, shared with lymphocytes and involved in anti-tumor defense, suggests that eosinophils can play a role in anti-tumoral immunity. We review in the present paper the current knowledge on epidemiology, recruitment, and mechanisms involved in the response of eosinophils toward tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DAMP:

Damage-associated molecular pattern molecule

ECP:

Eosinophil cationic protein

EDN:

Eosinophil-derived neurotoxin

EPO:

Eosinophil peroxidase

HL:

Hodgkin’s Lymphoma

HMGB1:

High-mobility group box 1

IL:

Interleukin

MBP:

Major basic protein

RAGE:

Receptor for advanced glycation end products

ROS:

Reactive oxygen species

SCC:

Squamous cell carcinoma

TATE:

Tumor-associated tissue eosinophilia

References

  1. Munitz A, Levi-Schaffer F (2004) Eosinophils: ‘new’ roles for ‘old’ cells. Allergy 59(3):268–275

    Article  PubMed  CAS  Google Scholar 

  2. Lowe D, Jorizzo J, Hutt MS (1981) Tumour-associated eosinophilia: a review. J Clin Pathol 34(12):1343–1348

    Article  PubMed  CAS  Google Scholar 

  3. Kita H (2011) Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev 242(1):161–177

    Article  PubMed  CAS  Google Scholar 

  4. Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, Kremer L, Adam E, Woerly G, Dombrowicz D, Capron M (2009) TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood 113(14):3235–3244

    Article  PubMed  CAS  Google Scholar 

  5. Legrand F, Driss V, Delbeke M, Loiseau S, Hermann E, Dombrowicz D, Capron M (2010) Human eosinophils exert TNF-alpha and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J Immunol 185(12):7443–7451

    Article  PubMed  CAS  Google Scholar 

  6. Legrand F, Driss V, Woerly G, Loiseau S, Hermann E, Fournie JJ, Heliot L, Mattot V, Soncin F, Gougeon ML, Dombrowicz D, Capron M (2009) A functional gammadeltaTCR/CD3 complex distinct from gammadeltaT cells is expressed by human eosinophils. PLoS ONE 4(6):e5926

    Article  PubMed  Google Scholar 

  7. Munitz A, Bachelet I, Fraenkel S, Katz G, Mandelboim O, Simon HU, Moretta L, Colonna M, Levi-Schaffer F (2005) 2B4 (CD244) is expressed and functional on human eosinophils. J Immunol 174(1):110–118

    PubMed  CAS  Google Scholar 

  8. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  PubMed  CAS  Google Scholar 

  9. Gleich GJ (2000) Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 105(4):651–663

    Article  PubMed  CAS  Google Scholar 

  10. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38(5):709–750

    Article  PubMed  CAS  Google Scholar 

  11. Abu-Ghazaleh RI, Gleich GJ, Prendergast FG (1992) Interaction of eosinophil granule major basic protein with synthetic lipid bilayers: a mechanism for toxicity. J Membr Biol 128(2):153–164

    PubMed  CAS  Google Scholar 

  12. Lucey DR, Nicholson-Weller A, Weller PF (1989) Mature human eosinophils have the capacity to express HLA-DR. Proc Natl Acad Sci USA 86(4):1348–1351

    Article  PubMed  CAS  Google Scholar 

  13. Spencer LA, Weller PF (2010) Eosinophils and Th2 immunity: contemporary insights. Immunol Cell Biol 88(3):250–256

    Article  PubMed  Google Scholar 

  14. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205(1):79–90

    Article  PubMed  CAS  Google Scholar 

  15. Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA (2010) Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy 40(4):563–575

    Article  PubMed  CAS  Google Scholar 

  16. Pretlow TP, Keith EF, Cryar AK, Bartolucci AA, Pitts AM, Pretlow TG II, Kimball PM, Boohaker EA (1983) Eosinophil infiltration of human colonic carcinomas as a prognostic indicator. Cancer Res 43(6):2997–3000

    PubMed  CAS  Google Scholar 

  17. Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, Aljama A (2000) Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88(7):1544–1548

    Article  PubMed  CAS  Google Scholar 

  18. Dorta RG, Landman G, Kowalski LP, Lauris JR, Latorre MR, Oliveira DT (2002) Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology 41(2):152–157

    Article  PubMed  CAS  Google Scholar 

  19. Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, Sasano H (2006) Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26(2B):1419–1424

    PubMed  Google Scholar 

  20. Fujii M, Yamashita T, Ishiguro R, Tashiro M, Kameyama K (2002) Significance of epidermal growth factor receptor and tumor associated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auris Nasus Larynx 29(2):175–181

    Article  PubMed  Google Scholar 

  21. Ono Y, Ozawa M, Tamura Y, Suzuki T, Suzuki K, Kurokawa K, Fukabori Y, Yamanaka H (2002) Tumor-associated tissue eosinophilia of penile cancer. Int J Urol 9(2):82–87

    Article  PubMed  Google Scholar 

  22. Costello R, O’Callaghan T, Sebahoun G (2005) Eosinophils and antitumour response. Rev Med Interne 26(6):479–484

    Article  PubMed  CAS  Google Scholar 

  23. Luna-More S, Florez P, Ayala A, Diaz F, Santos A (1997) Neutral and acid mucins and eosinophil and argyrophil crystalloids in carcinoma and atypical adenomatous hyperplasia of the prostate. Pathol Res Pract 193(4):291–298

    Article  PubMed  CAS  Google Scholar 

  24. von Wasielewski R, Seth S, Franklin J, Fischer R, Hubner K, Hansmann ML, Diehl V, Georgii A (2000) Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin’s disease, allowing for known prognostic factors. Blood 95(4):1207–1213

    Google Scholar 

  25. Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Improta S, Juzbasic S, Todesco M, Perin V, Gattei V, Herrmann F, Gruss HJ, Carbone A (1996) Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin’s disease cell line. Blood 88(9):3299–3305

    PubMed  CAS  Google Scholar 

  26. Geisinger KR, Steffee CH, McGee RS, Woodruff RD, Buss DH (1998) The cytomorphologic features of sclerosing mucoepidermoid carcinoma of the thyroid gland with eosinophilia. Am J Clin Pathol 109(3):294–301

    PubMed  CAS  Google Scholar 

  27. Fridlender ZG, Simon HU, Shalit M (2003) Metastatic carcinoma presenting with concomitant eosinophilia and thromboembolism. Am J Med Sci 326(2):98–101

    Article  PubMed  Google Scholar 

  28. Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blaser K, Zangemeister-Wittke U, Akbar AN, Simon HU (1998) Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood 92(3):778–783

    PubMed  CAS  Google Scholar 

  29. Teruya-Feldstein J, Jaffe ES, Burd PR, Kingma DW, Setsuda JE, Tosato G (1999) Differential chemokine expression in tissues involved by Hodgkin’s disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood 93(8):2463–2470

    PubMed  CAS  Google Scholar 

  30. Lorena SC, Oliveira DT, Dorta RG, Landman G, Kowalski LP (2003) Eotaxin expression in oral squamous cell carcinomas with and without tumour associated tissue eosinophilia. Oral Dis 9(6):279–283

    Article  PubMed  CAS  Google Scholar 

  31. Thielen C, Radermacher V, Trimeche M, Roufosse F, Goldman M, Boniver J, de Leval L (2008) TARC and IL-5 expression correlates with tissue eosinophilia in peripheral T-cell lymphomas. Leuk Res 32(9):1431–1438

    Article  PubMed  CAS  Google Scholar 

  32. Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O’Neill K, Colbert D, Lombari TR, Constant S, McGarry MP, Lee JJ, Lee NA (2006) Pivotal advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol 79(6):1131–1139

    Article  PubMed  CAS  Google Scholar 

  33. Stenfeldt AL, Wenneras C (2004) Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 112(4):605–614

    Article  PubMed  CAS  Google Scholar 

  34. Lotfi R, Lee JJ, Lotze MT (2007) Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J Immunother 30(1):16–28

    Article  PubMed  CAS  Google Scholar 

  35. Ito N, DeMarco RA, Mailliard RB, Han J, Rabinowich H, Kalinski P, Stolz DB, Zeh HJ III, Lotze MT (2007) Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol 81(1):75–83

    Article  PubMed  CAS  Google Scholar 

  36. Lotfi R, Herzog GI, DeMarco RA, Beer-Stolz D, Lee JJ, Rubartelli A, Schrezenmeier H, Lotze MT (2009) Eosinophils oxidize damage-associated molecular pattern molecules derived from stressed cells. J Immunol 183(8):5023–5031

    Article  PubMed  CAS  Google Scholar 

  37. Sun P, Ben Q, Tu S, Dong W, Qi X, Wu Y (2011) Serum interleukin-33 levels in patients with gastric cancer. Dig Dis Sci 56(12):3596–3601

    Article  PubMed  CAS  Google Scholar 

  38. Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S, Takatsu K (2011) Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 188(2):703–713

    Article  PubMed  Google Scholar 

  39. Caruso RA, Parisi A, Quattrocchi E, Scardigno M, Branca G, Parisi C, Luciano R, Paparo D, Fedele F (2011) Ultrastructural descriptions of heterotypic aggregation between eosinophils and tumor cells in human gastric carcinomas. Ultrastruct Pathol 35(4):145–149

    Article  PubMed  Google Scholar 

  40. Huland E, Huland H (1992) Tumor-associated eosinophilia in interleukin-2-treated patients: evidence of toxic eosinophil degranulation on bladder cancer cells. J Cancer Res Clin Oncol 118(6):463–467

    Article  PubMed  CAS  Google Scholar 

  41. Simon HU, Plotz S, Simon D, Seitzer U, Braathen LR, Menz G, Straumann A, Dummer R, Levi-Schaffer F (2003) Interleukin-2 primes eosinophil degranulation in hypereosinophilia and Wells’ syndrome. Eur J Immunol 33(4):834–839

    Article  PubMed  CAS  Google Scholar 

  42. Sosman JA, Bartemes K, Offord KP, Kita H, Fisher SG, Kefer C, Ellis TA, Fisher RI, Higgins TJ, Gleich GJ (1995) Evidence for eosinophil activation in cancer patients receiving recombinant interleukin-4: effects of interleukin-4 alone and following interleukin-2 administration. Clin Cancer Res 1(8):805–812

    PubMed  CAS  Google Scholar 

  43. Tepper RI, Coffman RL, Leder P (1992) An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257(5069):548–551

    Article  PubMed  CAS  Google Scholar 

  44. Rivoltini L, Viggiano V, Spinazze S, Santoro A, Colombo MP, Takatsu K, Parmiani G (1993) In vitro anti-tumor activity of eosinophils from cancer patients treated with subcutaneous administration of interleukin 2. Role of interleukin 5. Int J Cancer 54(1):8–15

    Article  PubMed  CAS  Google Scholar 

  45. Benatar T, Cao MY, Lee Y, Lightfoot J, Feng N, Gu X, Lee V, Jin H, Wang M, Wright JA, Young AH (2010) IL-17E, a proinflammatory cytokine, has antitumor efficacy against several tumor types in vivo. Cancer Immunol Immunother 59(6):805–817

    Article  PubMed  CAS  Google Scholar 

  46. Mattes J, Hulett M, Xie W, Hogan S, Rothenberg ME, Foster P, Parish C (2003) Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med 197(3):387–393

    Article  PubMed  CAS  Google Scholar 

  47. Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, Smyth MJ, Parish CR (2007) Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol 178(7):4222–4229

    PubMed  CAS  Google Scholar 

  48. Turner MC, Chen Y, Krewski D, Ghadirian P (2006) An overview of the association between allergy and cancer. Int J Cancer 118(12):3124–3132

    Article  PubMed  CAS  Google Scholar 

  49. Wang H, Diepgen TL (2005) Is atopy a protective or a risk factor for cancer? A review of epidemiological studies. Allergy 60(9):1098–1111

    Article  PubMed  CAS  Google Scholar 

  50. Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodriguez JA, Siccardi AG, Vangelista L, Riemer AB, Gould H (2008) AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy 63(10):1255–1266

    Article  PubMed  CAS  Google Scholar 

  51. Tomassini M, Tsicopoulos A, Tai PC, Gruart V, Tonnel AB, Prin L, Capron A, Capron M (1991) Release of granule proteins by eosinophils from allergic and nonallergic patients with eosinophilia on immunoglobulin-dependent activation. J Allergy Clin Immunol 88(3 Pt 1):365–375

    Article  PubMed  CAS  Google Scholar 

  52. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367(6459):183–186

    Article  PubMed  CAS  Google Scholar 

  53. Jonsson UB, Bystrom J, Stalenheim G, Venge P (2002) Polymorphism of the eosinophil cationic protein-gene is related to the expression of allergic symptoms. Clin Exp Allergy 32(7):1092–1095

    Article  PubMed  Google Scholar 

  54. Molin D (2004) Bystander cells and prognosis in Hodgkin lymphoma. Review based on a doctoral thesis. Ups J Med Sci 109(3):179–228

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solène Gatault.

Additional information

This paper is part of the Symposium in Writing: AllergoOncology: The Role of Th2 responses in cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatault, S., Legrand, F., Delbeke, M. et al. Involvement of eosinophils in the anti-tumor response. Cancer Immunol Immunother 61, 1527–1534 (2012). https://doi.org/10.1007/s00262-012-1288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1288-3

Keywords

Navigation