Skip to main content

Advertisement

Log in

Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objective

Cytokine-induced killer (CIK) cells have the ability to kill tumor in vitro and in vivo. This study was designed to evaluate the clinical efficacy of CIK cell immunotherapy following regular chemotherapy in patients with non-small cell lung cancer (NSCLC) after surgery.

Methods

A paired study, with 87 stage I–IV NSCLC patients in each group, was performed. Patients received either chemotherapy (arm 2) or chemotherapy in combination with autologous CIK cell immunotherapy (arm 1). Progression-free survival (PFS) and overall survival (OS) were evaluated.

Results

Of the 87 paired patients, 50 had early-stage disease (stage I–IIIA) and 37 had advanced-stage disease (stage IIIB–IV). Among early-stage patients, the distribution of 3-year PFS rate and median PFS time showed no statistical difference between the two groups (p = 0.259 and 0.093, respectively); however, the 3-year OS rate and median OS time in arm 1 were significantly higher than those in arm 2 (82 vs. 66 %; p = 0.049 and 73 vs. 53 months; p = 0.006, respectively). Among the advanced-stage patients, the 3-year PFS and OS rates of arm 1 were significantly higher than those of arm 2 (6 vs. 3 %; p < 0.001 and 31 vs. 3 %; p < 0.001, respectively); the median PFS and OS times in arm 1 were also significantly longer than those in arm 2 (13 vs. 6 months; p = 0.001 and 24 vs. 10 months; p < 0.001, respectively). Multivariate analyses indicated that the frequency of CIK cell immunotherapy was significantly associated with prolonged PFS (HR = 0.91; 95 % CI 0.85–0.98; p = 0.012) and OS (HR = 0.83; 95 % CI, 0.74–0.93; p = 0.001) in the arm 1.

Conclusions

The data suggested that CIK cell immunotherapy could improve the efficacy of conventional chemotherapy in NSCLC patients, and increased frequency of CIK cell treatment could further enhance the beneficial effects. A multi-center randomized trial is being carried out in our hospital to further validate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Juergens R, Brahmer J (2007) Targeting the epidermal growth factor receptor in non-small-cell lung cancer: who, which, when, and how? Curr Oncol Rep 9:255–264

    Article  PubMed  CAS  Google Scholar 

  3. Stinchcombe TE, Socinski MA (2009) Current treatments for advanced stage non-small cell lung cancer. Proc Am Thorac Soc 6:233–241

    Article  PubMed  CAS  Google Scholar 

  4. Chemotherapy in non-small cell lung cancer (1995) a meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small cell lung cancer collaborative group. BMJ 311:899–909

    Article  Google Scholar 

  5. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J et al (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Article  PubMed  CAS  Google Scholar 

  6. Crino L, Dansin E, Garrido P, Griesinger F, Laskin J, Pavlakis N et al (2010) Safety and efficacy of first-line bevacizumab-based therapy in advanced non-squamous non-small cell lung cancer (SAiL, MO19390): a phase 4 study. Lancet Oncol 11:733–740

    Article  PubMed  CAS  Google Scholar 

  7. Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M et al (2010) Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol 28:1835–1842

    Article  PubMed  CAS  Google Scholar 

  8. Heymach JV, Johnson BE, Prager D, Csada E, Roubec J, Pesek M et al (2007) Randomized, placebo-controlled phase II study of vandetanib plus docetaxel in previously treated non small-cell lung cancer. J Clin Oncol 25:4270–4277

    Article  PubMed  CAS  Google Scholar 

  9. Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG (2011) Clinical trials on CIK cells: first report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol 137:305–310

    Article  PubMed  CAS  Google Scholar 

  10. Stroncek D, Berlyne D, Fox B, Gee A, Heimfeld S, Lindblad R et al (2010) Developments in clinical cell therapy. Cytotherapy 12:425–428

    Article  PubMed  Google Scholar 

  11. Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83–117

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg S (1985) Lymphokine-activated killer cells: a new approach to immunotherapy of cancer. J Natl Cancer Inst 75:595–603

    PubMed  CAS  Google Scholar 

  13. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233:1318–1321

    Article  PubMed  CAS  Google Scholar 

  14. Yun YS, Hargrove ME, Ting CC (1989) In vivo antitumor activity of anti-CD3-induced activated killer cells. Cancer Res 49:4770–4774

    PubMed  CAS  Google Scholar 

  15. Shablak A, Hawkins RE, Rothwell DG, Elkord E (2009) T cell-based immunotherapy of metastatic renal cell carcinoma: modest success and future perspective. Clin Cancer Res 15:6503–6510

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL (1991) Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174:139–149

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG et al (1993) Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol 21:1673–1679

    PubMed  CAS  Google Scholar 

  18. Jazieh AR, Bamefleh H, Demirkazik A, Gaafar RM, Geara FB, Javaid M et al (2010) Modification and implementation of NCCN guidelines on non-small cell lung cancer in the Middle East and North Africa region. J Natl Compr Canc Netw 8(Suppl 3):S16–S21

    PubMed  Google Scholar 

  19. Tsuchida Y, Therasse P (2001) Response evaluation criteria in solid tumors (RECIST): new guidelines. Med Pediatr Oncol 37:1–3

    Article  PubMed  CAS  Google Scholar 

  20. Ren X, Yu J, Liu H, Zhang P, An X, Zhang N et al (2006) Th1 bias in PBMC induced by multicycles of auto-CIKs infusion in malignant solid tumor patients. Cancer Biother Radiopharm 21:22–33

    Article  PubMed  CAS  Google Scholar 

  21. Li H, Wang C, Yu J, Cao S, Wei F, Zhang W et al (2009) Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery. Cytotherapy 11:1076–1083

    Article  PubMed  CAS  Google Scholar 

  22. Liang Liu, Weihong Zhang, Xiuying Qi, et al. (2012) Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. January 24; Published Online First

  23. Kakimi K, Nakajima J, Wada H (2009) Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer 65:1–8

    Article  PubMed  Google Scholar 

  24. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA (1982) Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med 155:1823–1841

    Article  PubMed  CAS  Google Scholar 

  25. Whiteside TL, Miescher S, Hurlimann J, Moretta L, von Fliedner V (1986) Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. Int J Cancer 37:803–811

    Article  PubMed  CAS  Google Scholar 

  26. Muul LM, Spiess PJ, Director EP, Rosenberg SA (1987) Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 138:989–995

    PubMed  CAS  Google Scholar 

  27. Karimi M, Cao TM, Baker JA, Verneris MR, Soares L, Negrin RS (2005) Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8 + T cells and NK cells. J Immunol 175:7819–7828

    PubMed  CAS  Google Scholar 

  28. Verneris MR, Karami M, Baker J, Jayaswal A, Negrin RS (2004) Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8 + T cells. Blood 103:3065–3072

    Article  PubMed  CAS  Google Scholar 

  29. Nishimura R, Baker J, Beilhack A, Zeiser R, Olson JA, Sega EI et al (2008) In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood 112:2563–2574

    Article  PubMed  CAS  Google Scholar 

  30. Thorne SH, Negrin RS, Contag CH (2006) Synergistic antitumor effects of immune cell-viral biotherapy. Science 311:1780–1784

    Article  PubMed  CAS  Google Scholar 

  31. Marin V, Dander E, Biagi E, Introna M, Fazio G, Biondi A et al (2006) Characterization of in vitro migratory properties of anti-CD19 chimeric receptor-redirected CIK cells for their potential use in B-ALL immunotherapy. Exp Hematol 34:1219–1229

    Article  PubMed  CAS  Google Scholar 

  32. Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J et al (2000) Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356:802–807

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt-Wolf IG, Finke S, Trojaneck B, Denkena A, Lefterova P, Schwella N et al (1999) Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer 81:1009–1016

    Article  PubMed  CAS  Google Scholar 

  34. Li H, Yu JP, Cao S, Wei F, Zhang P, An XM et al (2007) CD4 +CD25 + regulatory T cells decreased the antitumor activity of cytokine-induced killer (CIK) cells of lung cancer patients. J Clin Immunol 27:317–326

    Article  PubMed  CAS  Google Scholar 

  35. Wu C, Jiang J, Shi L, Xu N (2008) Prospective study of chemotherapy in combination with cytokine-induced killer cells in patients suffering from advanced non-small cell lung cancer. Anticancer Res 28:3997–4002

    PubMed  CAS  Google Scholar 

  36. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M et al (2010) Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28:1099–1105

    Article  PubMed  CAS  Google Scholar 

  37. Hoos A, Eggermont AM, Janetzki S, Hodi FS, Ibrahim R, Anderson A et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Natural Science Funds (No. 30872986 and No. 30901754) and by the Tianjin Key Natural Science Funds (No. 09JCZDJC20400).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Li.

Additional information

Disclaimers: This study has not been presented in part anywhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Wang, C., Liu, L. et al. Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother 61, 2125–2133 (2012). https://doi.org/10.1007/s00262-012-1260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1260-2

Keywords

Navigation