Skip to main content

Advertisement

Log in

CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive cell transfer therapy with reactive T cells is one of the most promising immunotherapeutic modalities for metastatic melanoma patients. Homing of the transferred T cells to all tumor sites in sufficient numbers is of great importance. Here, we seek to exploit endogenous chemotactic signals in order to manipulate and enhance the directional trafficking of transferred T cells toward melanoma. Chemokine profiling of 15 melanoma cultures shows that CXCL1 and CXCL8 are abundantly expressed and secreted from melanoma cultures. However, the complimentary analysis on 40 melanoma patient-derived tumor-infiltrating lymphocytes (TIL) proves that the corresponding chemokine receptors are either not expressed (CXCR2) or expressed at low levels (CXCR1). Using the in vitro transwell system, we demonstrate that TIL cells preferentially migrate toward melanoma and that endogenously expressing CXCR1 TIL cells are significantly enriched among the migrating lymphocytes. The role of the chemokines CXCL1 and CXCL8 is demonstrated by partial abrogation of this enrichment with anti-CXCL1 and anti-CXCL8 neutralizing antibodies. The role of the chemokine receptor CXCR1 is validated by the enhanced migration of CXCR1-engineered TIL cells toward melanoma or recombinant CXCL8. Cytotoxicity and IFNγ secretion activity are unaltered by CXCR1 expression profile. Taken together, these results mark CXCR1 as a candidate for genetic manipulations to enhance trafficking of adoptively transferred T cells. This approach is complimentary and potentially synergistic with other genetic strategies designed to enhance anti-tumor potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vicari AP, Caux C (2002) Chemokines in cancer. Cytokine Growth Factor Rev 13:143–154

    Article  PubMed  CAS  Google Scholar 

  2. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M et al (2009) Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69:3077–3085

    Article  PubMed  CAS  Google Scholar 

  3. Viola A, Molon B, Contento RL (2008) Chemokines: coded messages for T-cell missions. Front Biosci 13:6341–6353

    Article  PubMed  CAS  Google Scholar 

  4. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  5. Jin T, Xu X, Hereld D (2008) Chemotaxis, chemokine receptors and human disease. Cytokine 44:1

    Article  PubMed  CAS  Google Scholar 

  6. Zhang T, Somasundaram R, Berencsi K, Caputo L, Gimotty P et al (2006) Migration of cytotoxic T lymphocytes toward melanoma cells in three-dimensional organotypic culture is dependent on CCL2 and CCR4. Eur J Immunol 36:457–467

    Article  PubMed  CAS  Google Scholar 

  7. Kunz M, Toksoy A, Goebeler M, Engelhardt E, Brocker E et al (1999) Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol 189:552–558

    Article  PubMed  CAS  Google Scholar 

  8. Zhang T, Somasundaram R, Berencsi K, Caputo L, Rani P et al (2005) CXC Chemokine Ligand 12 (Stromal Cell-Derived Factor 1-±) and CXCR4-Dependent Migration of CTLs toward Melanoma Cells in Organotypic Culture. J Immunol 174:5856

    PubMed  CAS  Google Scholar 

  9. Vianello F, Papeta N, Chen T, Kraft P, White N et al (2006) Murine B16 Melanomas Expressing High Levels of the Chemokine Stromal-Derived Factor-1/CXCL12 Induce Tumor-Specific T Cell Chemorepulsion and Escape from Immune Control. J Immunol 176:2902

    PubMed  CAS  Google Scholar 

  10. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R et al (2008) Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. J Clin Oncol 26:5233

    Article  PubMed  CAS  Google Scholar 

  11. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL et al (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23:2346–2357

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    Article  PubMed  CAS  Google Scholar 

  13. Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J et al (2006) Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 24:5060–5069

    Article  PubMed  CAS  Google Scholar 

  14. Khammari A, Labarriere N, Vignard V, Nguyen JM, Pandolfino MC et al (2009) Treatment of metastatic melanoma with autologous Melan-A/MART-1-specific cytotoxic T lymphocyte clones. J Invest Dermatol 129:2835–2842

    Article  PubMed  CAS  Google Scholar 

  15. Brimnes MK, Gang AO, Donia M, Thor Straten P, Svane IM, et al. (2012) Generation of autologous tumor-specific T cells for adoptive transfer based on vaccination, in vitro restimulation and CD3/CD28 dynabead-induced T cell expansion. Cancer Immunol Immunother

  16. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF et al (2004) Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 173:7125–7130

    PubMed  CAS  Google Scholar 

  17. Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28:53–62

    Article  PubMed  Google Scholar 

  18. Peterson AC, Harlin H, Gajewski TF (2003) Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21:2342–2348

    Article  PubMed  CAS  Google Scholar 

  19. Cormier JN, Salgaller ML, Prevette T, Barracchini KC, Rivoltini L et al (1997) Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am 3:37–44

    PubMed  CAS  Google Scholar 

  20. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A et al (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC et al (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8 + T cells in patients with melanoma. J Immunol 175:6169–6176

    PubMed  CAS  Google Scholar 

  22. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  23. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC et al (2009) Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  PubMed  CAS  Google Scholar 

  24. Rosenberg SA, Dudley ME (2009) Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 21:233–240

    Article  PubMed  CAS  Google Scholar 

  25. Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y et al (2010) Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 16:5458–5468

    Article  PubMed  CAS  Google Scholar 

  26. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS et al (1989) Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 7:250–261

    PubMed  CAS  Google Scholar 

  27. Gajewski TF (2007) Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13:5256–5261

    Article  PubMed  CAS  Google Scholar 

  28. Gajewski TF, Meng Y, Blank C, Brown I, Kacha A et al (2006) Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213:131

    Article  PubMed  CAS  Google Scholar 

  29. Markel G, Seidman R, Cohen Y, Besser MJ, Sinai TC et al (2009) Dynamic expression of protective CEACAM1 on melanoma cells during specific immune attack. Immunology 126:186–200

    Article  PubMed  CAS  Google Scholar 

  30. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O et al (2010) Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin Cancer Res 16:2646–2655

    Article  PubMed  CAS  Google Scholar 

  31. Markel G, Seidman R, Stern N, Cohen-Sinai T, Izhaki O et al (2006) Inhibition of human tumor-infiltrating lymphocyte effector functions by the homophilic carcinoembryonic cell adhesion molecule 1 interactions. J Immunol 177:6062–6071

    PubMed  CAS  Google Scholar 

  32. Markel G, Ortenberg R, Seidman R, Sapoznik S, Koren-Morag N, et al. (2010) Systemic dysregulation of CEACAM1 in melanoma patients. Cancer Immunol Immunother 59(2):215–230

    Google Scholar 

  33. Svec J, Ergang P, Mandys V, Kment M, Pacha J (2010) Expression profiles of proliferative and antiapoptotic genes in sporadic and colitis-related mouse colon cancer models. Int J Exp Pathol 91:44–53

    Article  PubMed  CAS  Google Scholar 

  34. Orchard PJ, Blazar BR, Burger S, Levine B, Basso L et al (2002) Clinical-scale selection of anti-CD3/CD28-activated T cells after transduction with a retroviral vector expressing herpes simplex virus thymidine kinase and truncated nerve growth factor receptor. Hum Gene Ther 13:979–988

    Article  PubMed  CAS  Google Scholar 

  35. Bialer G, Horovitz-Fried M, Ya’acobi S, Morgan RA, Cohen CJ (2010) Selected murine residues endow human TCR with enhanced tumor recognition. J Immunol 184:6232–6241

    Article  PubMed  CAS  Google Scholar 

  36. Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC et al (2006) High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 13:151–159

    Article  PubMed  CAS  Google Scholar 

  37. Besser MJ, Shapira-Frommer R, Treves AJ, Zippel D, Itzhaki O et al (2009) Minimally cultured or selected autologous tumor-infiltrating lymphocytes after a lympho-depleting chemotherapy regimen in metastatic melanoma patients. J Immunother 32:415–423

    Article  PubMed  CAS  Google Scholar 

  38. Eikawa S, Ohue Y, Kitaoka K, Aji T, Uenaka A et al (2010) Enrichment of Foxp3+ CD4 regulatory T cells in migrated T cells to IL-6- and IL-8-expressing tumors through predominant induction of CXCR1 by IL-6. J Immunol 185:6734–6740

    Article  PubMed  CAS  Google Scholar 

  39. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL et al (2002) Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther 13:1971–1980

    Article  PubMed  CAS  Google Scholar 

  40. Hess C, Means TK, Autissier P, Woodberry T, Altfeld M et al (2004) IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood 104:3463–3471

    Article  PubMed  CAS  Google Scholar 

  41. Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC et al (2009) Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 23:267–275

    Article  PubMed  CAS  Google Scholar 

  42. Ludwig A, Petersen F, Zahn S, Gotze O, Schroder JM et al (1997) The CXC-chemokine neutrophil-activating peptide-2 induces two distinct optima of neutrophil chemotaxis by differential interaction with interleukin-8 receptors CXCR-1 and CXCR-2. Blood 90:4588–4597

    PubMed  CAS  Google Scholar 

  43. Rajagopalan L, Rajarathnam K (2004) Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. J Biol Chem 279:30000–30008

    Article  PubMed  CAS  Google Scholar 

  44. Gasser O, Missiou A, Eken C, Hess C (2005) Human CD8+ T cells store CXCR1 in a distinct intracellular compartment and up-regulate it rapidly to the cell surface upon activation. Blood 106:3718–3724

    Article  PubMed  CAS  Google Scholar 

  45. Gasser O, Schmid TA, Zenhaeusern G, Hess C (2006) Cyclooxygenase regulates cell surface expression of CXCR3/1-storing granules in human CD4+ T cells. J Immunol 177:8806–8812

    PubMed  CAS  Google Scholar 

  46. Eikawa S, Ohue Y, Kitaoka K, Aji T, Uenaka A et al (2010) Enrichment of Foxp3+ CD4 regulatory T cells in migrated T cells to IL-6- and IL-8-expressing tumors through predominant induction of CXCR1 by IL-6. J Immunol 185:6734–6740

    Article  PubMed  CAS  Google Scholar 

  47. Shioda T, Nakayama EE, Tanaka Y, Xin X, Liu H et al (2001) Naturally occurring deletional mutation in the C-terminal cytoplasmic tail of CCR5 affects surface trafficking of CCR5. J Virol 75:3462–3468

    Article  PubMed  CAS  Google Scholar 

  48. Quereux G, Pandolfino MC, Knol AC, Khammari A, Volteau C et al (2007) Tissue prognostic markers for adoptive immunotherapy in melanoma. Eur J Dermatol 17:295–301

    PubMed  CAS  Google Scholar 

  49. Meidenbauer N, Marienhagen J, Laumer M, Vogl S, Heymann J et al (2003) Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:2161–2169

    PubMed  CAS  Google Scholar 

  50. Richmond A, Thomas HG (1988) Melanoma growth stimulatory activity: isolation from human melanoma tumors and characterization of tissue distribution. J Cell Biochem 36:185–198

    Article  PubMed  CAS  Google Scholar 

  51. Rofstad EK, Halsor EF (2000) Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor, and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res 60:4932–4938

    PubMed  CAS  Google Scholar 

  52. Cheong HS, Shin HD, Lee SO, Park BL, Choi YH et al (2006) Polymorphisms in interleukin 8 and its receptors (IL8, IL8RA and IL8RB) and association of common IL8 receptor variants with peripheral blood eosinophil counts. J Hum Genet 51:781

    Article  PubMed  CAS  Google Scholar 

  53. Dumitrascu D (1996) Mast cells as potent inflammatory cells. Rom J Intern Med 34:159–172

    PubMed  CAS  Google Scholar 

  54. Chuntharapai A, Lee J, Hebert CA, Kim KJ (1994) Monoclonal antibodies detect different distribution patterns of IL-8 receptor A and IL-8 receptor B on human peripheral blood leukocytes. J Immunol 153:5682–5688

    PubMed  CAS  Google Scholar 

  55. Inngjerdingen M, Damaj B, Maghazachi AA (2001) Expression and regulation of chemokine receptors in human natural killer cells. Blood 97:367–375

    Article  PubMed  CAS  Google Scholar 

  56. Smith ML, Olson TS, Ley K (2004) CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. J Exp Med 200:935–939

    Article  PubMed  CAS  Google Scholar 

  57. Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y et al (2010) Transduction of tumor-specific T Cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 16:5458–5468

    Article  PubMed  CAS  Google Scholar 

  58. Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV et al (2008) Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14:1264–1270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Many special thanks to Haya and Nehemia Lemelbaum for the enormous support that enabled the authors to conduct these studies.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Markel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapoznik, S., Ortenberg, R., Galore-Haskel, G. et al. CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunol Immunother 61, 1833–1847 (2012). https://doi.org/10.1007/s00262-012-1245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1245-1

Keywords

Navigation