Skip to main content

Advertisement

Log in

Activation-induced cell death of memory CD8+ T cells from pleural effusion of lung cancer patients is mediated by the type II Fas-induced apoptotic pathway

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Lung cancer is the second most common form of cancer and the leading cause of cancer death worldwide. Pleural effusions, containing high numbers of mononuclear and tumor cells, are frequent in patients with advanced stages of lung cancer. We reported that in pleural effusions from primary lung cancer, the CD8+ T cell subpopulation, and particularly the terminally differentiated subset, is reduced compared to that of non-malignant effusions. We analyzed the participation of activation-induced cell death (AICD) and extrinsic pathways (type I or II) as mechanisms for the decrease in pleural effusion CD8+ T cell subpopulation. Pleural effusion or peripheral blood CD4+ and CD8+ T cells, from lung cancer patients, were stimulated with anti-CD3 antibody and analyzed for (a) apoptosis by annexin-V-binding and TUNEL assay, (b) transcript levels of Fas ligand (FasL) and TRAIL by real-time RT–PCR, (c) expression of FasL and TRAIL, measured as integrated mean fluorescence intensities (iMFI) by flow cytometry, (d) expression of Bcl-2 and BIM molecules, measured as MFI, and (e) apoptosis inhibition using caspase-8 and -9 inhibitors. Pleural effusion CD8+ T cells, but not CD4+ T cells, from cancer patients underwent AICD. Blocking FasL/Fas pathway protected from AICD. Upregulation of FasL and TRAIL expressions was found in pleural effusion CD8+ T cells, which also showed a subset of Bcl-2 low cells. In memory CD8+ T cells, AICD depended on both extrinsic and intrinsic apoptotic pathways. Hence, in the pleural space of lung cancer patients, AICD might compromise the antitumor function of CD8+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alberg AJ, Ford JG, Samet JM (2007) Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:29S–55S

    Article  PubMed  CAS  Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E (2008) Cancer statistics. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  3. Atanackovic D, Block A, de Weerth A, Faltz C, Hossfeld DK, Hegewisch-Becker S (2004) Characterization of effusion-infiltrating T cells: benign versus malignant effusions. Clin Cancer Res 10:2600–2608

    Article  PubMed  CAS  Google Scholar 

  4. Pace E, Bruno TF, Berenger B, Mody CH, Melis M, Ferraro M, Tipa A, Bruno A, Profita M, Bonsignore G, Gjomarkaj M (2007) Elevated expression of prostaglandin receptor and increased release of prostaglandin E2 maintain the survival of CD45RO+ T cells in the inflamed human pleural space. Immunology 121:427–436

    Article  PubMed  CAS  Google Scholar 

  5. Prado-Garcia H, Aguilar-Cazares D, Flores-Vergara H, Mandoki JJ, Lopez-Gonzalez JS (2005) Effector, memory and naïve CD8+ T cells in peripheral blood and pleural effusion from lung adenocarcinoma patients. Lung Cancer 47:361–371

    Article  PubMed  Google Scholar 

  6. Broderick L, Brooks SP, Takita H, Baer AN, Bernstein JM, Bankert RB (2006) IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated memory T cells. Clin Immunol 118:159–169

    Article  PubMed  CAS  Google Scholar 

  7. Caras I, Grigorescu A, Stavaru C, Radu DL, Mogos I, Szegli G, Salageanu A (2004) Evidence for immune defects in breast and lung cancer patients. Cancer Immunol Immunother 53:1146–1152

    Article  PubMed  CAS  Google Scholar 

  8. Maher S, Toomey D, Condron C, Bouchier-Hayes D (2002) Activation-induced cell death: the controversial role of Fas and Fas ligand in immune privilige and tumour counterattack. Immunol Cell Biol 80:131–137

    Article  PubMed  CAS  Google Scholar 

  9. Wieckowski EU, Visus C, Szajnik M, Szczepanski MJ, Storkus WJ, Whiteside TL (2009) Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J Immunol 183:3720–3730

    Article  PubMed  CAS  Google Scholar 

  10. Hoffmann TK, Dworacki G, Tsukihiro T, Meidenbauer N, Gooding W, Johnson JT, Whiteside TL (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8:2553–2562

    PubMed  Google Scholar 

  11. Kuss I, Donnenberg AD, Gooding W, Whiteside TL (2003) Effector CD8+ CD45RO-CD27-T cells have signalling defects in patients with squamous cell carcinoma of the head and neck. Br J Cancer 88:223–230

    Article  PubMed  CAS  Google Scholar 

  12. Lu B, Finn OJ (2008) T-cell death and cancer immune tolerance. Cell Death Differ 15:70–79

    Article  PubMed  Google Scholar 

  13. Prado-Garcia H, Aguilar-Cazares D, Meneses-Flores M, Morales-Fuentes J, Lopez-Gonzalez JS (2008) Lung carcinomas do not induce T-cell apoptosis via the Fas/Fas ligand pathway but down-regulate CD3 epsilon expression. Cancer Immunol Immunother 57:325–336

    Article  PubMed  CAS  Google Scholar 

  14. Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  PubMed  CAS  Google Scholar 

  15. Gorak-Stolinska P, Truman JP, Kemeny DM, Noble A (2001) Activation-induced cell death of human T-cell subsets is mediated by Fas and granzyme B but is independent of TNF-alpha. J Leuk Biol 70:756–766

    CAS  Google Scholar 

  16. Bouillet P, O’Reilly LA (2009) CD95, BIM and T cell homeostasis. Nat Rev Immunol 9:514–519

    Article  PubMed  CAS  Google Scholar 

  17. Restifo NP (2000) Not so Fas: re-evaluating the mechanisms of immune privilege and tumor escape. Nat Med 6:493–495

    Article  PubMed  CAS  Google Scholar 

  18. Zaks TZ, Chappell DB, Rosenberg SA, Restifo NP (1999) Fas-mediated suicide of tumor-reactive T cells following activation by specific tumor: selective rescue by caspase inhibition. J Immunol 162:3273–3279

    PubMed  CAS  Google Scholar 

  19. Li JH, Rosen D, Sondel P, Berke G (2002) Immune privilege and FasL: two ways to inactivate effector cytotoxic T lymphocytes by FasL-expressing cells. Immunology 105:267–277

    Article  PubMed  CAS  Google Scholar 

  20. Radoja S, Saio M, Frey AB (2001) CD8+ tumor-infiltrating lymphocytes are primed for Fas-mediated activation-induced cell death but are not apoptotic in situ. J Immunol 166:6074–6083

    PubMed  CAS  Google Scholar 

  21. Friedlein G, El Hage F, Vergnon I, Richon C, Saulnier P, Lécluse Y, Caignard A, Boumsell L, Bismuth G, Chouaib S, Mami-Chouaib F (2007) Human CD5 protects circulating tumor antigen-specific CTL from tumor-mediated activation-induced cell death. J Immunol 178:6821–6827

    PubMed  CAS  Google Scholar 

  22. Gati A, Guerra N, Gaudin C, Da Rocha S, Escudier B, Lécluse Y, Bettaieb A, Chouaib S, Caignard A (2003) CD158 receptor controls cytotoxic T-lymphocyte susceptibility to tumor-mediated activation-induced cell death by interfering with Fas signaling. Cancer Res 63:7475–7482

    PubMed  CAS  Google Scholar 

  23. Mueller YM, Makar V, Bojczuk PM, Witek J, Katsikis PD (2003) IL-15 enhances the function and inhibits CD95/Fas-induced apoptosis of human CD4+ and CD8+ effector-memory T cells. Int Immunol 15:49–58

    Article  PubMed  CAS  Google Scholar 

  24. Albers AE, Schaefer C, Visus C, Gooding W, DeLeo AB, Whiteside TL (2009) Spontaneous apoptosis of tumor-specific tetramer+ CD8+ T lymphocytes in the peripheral circulation of patients with head and neck cancer. Head Neck 31:773–781

    Article  PubMed  Google Scholar 

  25. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed SG, Morris SL, Roederer M, Seder RA (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13:843–850

    Article  PubMed  CAS  Google Scholar 

  26. Iwai K, Miyawaki T, Takizawa T, Konno A, Ohta K, Yachie A, Seki H, Taniguchi N (1994) Differential expression of bcl-2 and susceptibility to anti-Fas-mediated cell death in peripheral blood lymphocytes, monocytes, and neutrophils. Blood 84:1201–1208

    PubMed  CAS  Google Scholar 

  27. Fas SC, Baumann S, Krueger A, Frey CR, Schulze-Bergkamen H, Brenner D, Stumpf C, Kappes K, Krammer PH (2006) In vitro generated human memory-like T cells are CD95 type II cells and resistant towards CD95-mediated apoptosis. Eur J Immunol 36:2894–2903

    Article  PubMed  CAS  Google Scholar 

  28. Bosque A, Pardo J, Martínez-Lorenzo MJ, Iturralde M, Marzo I, Piñeiro A, Alava MA, Naval J, Anel A (2005) Down-regulation of normal human T cell blast activation: roles of APO2L/TRAIL, FasL, and c-FLIP, Bim, or Bcl-x isoform expression. J Leuk Biol 77:568–578

    Article  CAS  Google Scholar 

  29. Petrovas C, Chaon B, Ambrozak DR, Price DA, Melenhorst JJ, Hill BJ, Geldmacher C, Casazza JP, Chattopadhyay PK, Roederer M, Douek DC, Mueller YM, Jacobson JM, Kulkarni V, Felber BK, Pavlakis GN, Katsikis PD, Koup RA (2009) Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. J Immunol 183:1120–1132

    Article  PubMed  CAS  Google Scholar 

  30. Okamoto M, Hasegawa Y, Hara T, Hashimoto N, Imaizumi K, Shimokata K, Kawabe T (2005) T-helper type 1/T-helper type 2 balance in malignant pleural effusions compared to tuberculous pleural effusions. Chest 128:4030–4035

    Article  PubMed  CAS  Google Scholar 

  31. Duncan SR, Elias DJ, Roglic M, Pekny KW, Theofilopoulos AN (1997) T-cell receptor biases and clonal proliferations in blood and pleural effusions of patients with lung cancer. Hum Immunol 53:39–48

    Article  PubMed  CAS  Google Scholar 

  32. Srikrishna G, Freeze HH (2009) Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia 11:615–628

    PubMed  CAS  Google Scholar 

  33. Martinez-Lorenzo MJ, Anel A, Gamen S, Monleon I, Lasierra P, Larrad L, Pineiro A, Alava MA, Naval J (1999) Activated human T cell release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163:1274–1281

    PubMed  CAS  Google Scholar 

  34. Boudet F, Lecoeur H, Gougeon ML (1996) Apoptosis associated with ex vivo down-regulation of Bcl-2 and up-regulation of Fas in potential cytotoxic CD8+ T lymphocytes during HIV infection. J Immunol 156:2282–2293

    PubMed  CAS  Google Scholar 

  35. Lecoeur H, Ledru E, Gougeon ML (1998) A cytofluorometric method for the simultaneous detection of both intracellular and surface antigens of apoptotic peripheral lymphocytes. J Immunol Methods 217:11–26

    Article  PubMed  CAS  Google Scholar 

  36. Yano T, Fukuyama Y, Yokoyama H, Takai E, Tanaka Y, Asoh H, Ichinose Y (1996) Interleukin-2 receptors in pulmonary adenocarcinoma tissue. Lung Cancer 16:13–19

    Article  PubMed  CAS  Google Scholar 

  37. Barker BR, Parvani JG, Meyer D, Hey AS, Skak K, Letvin NL (2007) IL-21 induces apoptosis of antigen-specific CD8+ T lymphocytes. J Immunol 179:3596–3603

    PubMed  CAS  Google Scholar 

  38. Kilinc MO, Aulakh KS, Nair RE, Jones SA, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol 177:6962–6973

    PubMed  CAS  Google Scholar 

  39. Inaba M, Kurasawa K, Mamura M, Kumano K, Saito Y, Iwamoto I (1999) Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J Immunol 163:1315–1320

    PubMed  CAS  Google Scholar 

  40. Batra RK, Lin Y, Sharma S, Dohadwala M, Luo J, Pold M, Dubinett SM (2003) Non-small cell lung cancer-derived soluble mediators enhance apoptosis in activated T lymphocytes through an I kappa B kinase-dependent mechanism. Cancer Res 63:642–646

    PubMed  CAS  Google Scholar 

  41. Das T, Sa G, Paszkiewicz-Kozik E, Hilston C, Molto L, Rayman P, Kudo D, Biswas K, Bukowski RM, Finke JH, Tannenbaum CS (2008) Renal cell carcinoma tumors induce T cell apoptosis through receptor-dependent and receptor-independent pathways. J Immunol 180:4687–4696

    PubMed  CAS  Google Scholar 

  42. Spooner R, Yilmaz O (2011) The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci 12:334–352

    Article  PubMed  CAS  Google Scholar 

  43. Williams MS, Noguchi S, Henkart PA, Osawa Y (1998) Nitric oxide synthase plays a signaling role in TCR-triggered apoptotic death. J Immunol 161:6526–6531

    PubMed  CAS  Google Scholar 

  44. Norell H, Martins da Palma T, Lesher A, Kaur N, Mehrotra M, Naga OS, Spivey N, Olafimihan S, Chakraborty NG, Voelkel-Johnson C, Nishimura MI, Mukherji B, Mehrotra S (2009) Inhibition of superoxide generation upon T-cell receptor engagement rescues Mart-1(27–35)-reactive T cells from activation-induced cell death. Cancer Res 169:6282–6289

    Article  Google Scholar 

  45. Takahashi A, Hanson MG, Norell HR, Havelka AM, Kono K, Malmberg KJ, Kiessling RV (2005) Preferential cell death of CD8+ effector memory (CCR7-CD45RA-) T cells by hydrogen peroxide-induced oxidative stress. J Immunol 174:6080–6087

    PubMed  CAS  Google Scholar 

  46. Zarozinski CC, McNally JM, Lohman BL, Daniels KA, Welsh RM (2000) Bystander sensitization to activation-induced cell death as a mechanism of virus-induced immune suppression. J Virol 74:3650–3658

    Article  PubMed  CAS  Google Scholar 

  47. Antoniou KM, Ferdoutsis E, Bouros D (2003) Interferons and their application in the diseases of the lung. Chest 123:209–216

    Article  PubMed  CAS  Google Scholar 

  48. Castagneto B, Zai S, Mutti L, Lazzaro A, Ridolfi R, Piccolini E, Ardizzoni A, Fumagalli L, Valsuani G, Botta M (2001) Palliative and therapeutic activity of IL-2 immunotherapy in unresectable malignant pleural mesothelioma with pleural effusion: results of a phase II study on 31 consecutive patients. Lung Cancer 31:303–310

    Article  PubMed  CAS  Google Scholar 

  49. Timoshenko AV, Lan Y, Gabius HJ, Lala PK (2001) Immunotherapy of C3H/HeJ mammary adenocarcinoma with interleukin-2, mistletoe lectin or their combination. Effects on tumour growth, capillary leakage and nitric oxide (NO) production. Eur J Cancer 37:1910–1920

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Conacyt grant 102106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heriberto Prado-Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prado-Garcia, H., Romero-Garcia, S., Morales-Fuentes, J. et al. Activation-induced cell death of memory CD8+ T cells from pleural effusion of lung cancer patients is mediated by the type II Fas-induced apoptotic pathway. Cancer Immunol Immunother 61, 1065–1080 (2012). https://doi.org/10.1007/s00262-011-1165-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1165-5

Keywords

Navigation