Skip to main content

Advertisement

Log in

Characterization of the evolution of immune phenotype during the development and progression of squamous cell carcinoma of the head and neck

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

While studies have indicated that squamous cell carcinoma of the head and neck (HNSCC) is associated with immune suppression, these studies did not analyze the immune response at the dysplastic stage. The present study utilized a mouse model of 4-nitroquinoline 1-oxide-induced oral carcinogenesis to examine the alterations in immune phenotype at the premalignant and malignant stages of HNSCC. Cervical lymph nodes of HNSCC-bearing mice were found to contain a greater number of cells, including a greater number of conventional (Tconv) and regulatory (Treg) T cells, compared to cervical lymph nodes of control and premalignant lesion-bearing mice, though the Tconv cells appear to be less proliferative and the Treg cells appear to be less suppressive at the HNSCC stage. Premalignant lesion-bearing mouse lymph nodes consist of a greater percentage of Tconv cells expressing markers for activation, memory, and exhaustion compared to both control and HNSCC-bearing mice. Also, lymph nodes’ cells from both premalignant lesion-bearing and HNSCC-bearing mice include increased levels of Th1, Tc1, and Th17 cells, with no differences in levels of Th2 cells, compared to control mice. The data show that while there is the expected increase in immunosuppressive Tregs in lymph nodes when HNSCC is present, there is also an unexpected increase in immune populations usually associated with a beneficial antitumor response, including Tconv cells and Th1 and Tc1 cells. In addition, the results demonstrate that the premalignant stage of HNSCC development is associated with a robust immune response involving an increase in inflammatory Th1, Tc1, and Th17 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Forastiere A, Koch W, Trotti A, Sidransky D (2001) Head and neck cancer. N Engl J Med 345(26):1890–1900. doi:10.1056/NEJMra001375

    Article  PubMed  CAS  Google Scholar 

  2. Hauswald H, Simon C, Hecht S, Debus J, Lindel K (2011) Long-term outcome and patterns of failure in patients with advanced head and neck cancer. Radiat Oncol 6(1):70. doi:10.1186/1748-717X-6-70

    Article  PubMed  Google Scholar 

  3. King GN, Healy CM, Glover MT, Kwan JT, Williams DM, Leigh IM, Worthington HV, Thornhill MH (1995) Increased prevalence of dysplastic and malignant lip lesions in renal-transplant recipients. N Engl J Med 332(16):1052–1057. doi:10.1056/NEJM199504203321602

    Article  PubMed  CAS  Google Scholar 

  4. Harris JP, Penn I (1981) Immunosuppression and the development of malignancies of the upper airway and related structures. Laryngoscope 91(4):520–528

    Article  PubMed  CAS  Google Scholar 

  5. Bose A, Chakraborty T, Chakraborty K, Pal S, Baral R (2008) Dysregulation in immune functions is reflected in tumor cell cytotoxicity by peripheral blood mononuclear cells from head and neck squamous cell carcinoma patients. Cancer Immun 8:10

    PubMed  Google Scholar 

  6. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT, Whiteside TL (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14(12):3706–3715. doi:10.1158/1078-0432.CCR-07-5126

    Article  PubMed  CAS  Google Scholar 

  7. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH, Brasnu DF, Tartour E (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12(2):465–472. doi:10.1158/1078-0432.CCR-05-1886

    Article  PubMed  CAS  Google Scholar 

  8. Young MR, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ (1997) Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 74(1):69–74

    Article  PubMed  CAS  Google Scholar 

  9. Lathers DM, Achille NJ, Young MR (2003) Incomplete Th2 skewing of cytokines in plasma of patients with squamous cell carcinoma of the head and neck. Hum Immunol 64(12):1160–1166

    Article  PubMed  CAS  Google Scholar 

  10. Williams R, Lee DW, Elzey BD, Anderson ME, Hostager BS, Lee JH (2009) Preclinical models of HPV+ and HPV− HNSCC in mice: an immune clearance of HPV+ HNSCC. Head Neck 31(7):911–918. doi:10.1002/hed.21040

    Article  PubMed  Google Scholar 

  11. Rajjoub S, Basha SR, Einhorn E, Cohen MC, Marvel DM, Sewell DA (2007) Prognostic significance of tumor-infiltrating lymphocytes in oropharyngeal cancer. Ear Nose Throat J 86(8):506–511

    PubMed  Google Scholar 

  12. Zeng X, Chen Q, Nie M (2003) The relationship of Fas and Fas L protein expression in oral carcinogenesis. Hua Xi Kou Qiang Yi Xue Za Zhi 21(4):259–262

    PubMed  Google Scholar 

  13. Igney FH, Krammer PH (2005) Tumor counterattack: fact or fiction? Cancer Immunol Immunother 54(11):1127–1136. doi:10.1007/s00262-005-0680-7

    Article  PubMed  Google Scholar 

  14. Schoop RA, Noteborn MH, Baatenburg de Jong RJ (2009) A mouse model for oral squamous cell carcinoma. J Mol Histol 40(3):177–181. doi:10.1007/s10735-009-9228-z

    Article  PubMed  CAS  Google Scholar 

  15. Strati K, Pitot HC, Lambert PF (2006) Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci USA 103(38):14152–14157. doi:10.1073/pnas.0606698103

    Article  PubMed  CAS  Google Scholar 

  16. O’Malley BW Jr, Cope KA, Johnson CS, Schwartz MR (1997) A new immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck Surg 123(1):20–24

    Article  PubMed  Google Scholar 

  17. Sudhoff HH, Schwarze HP, Winder D, Steinstraesser L, Gorner M, Stanley M, Goon PK (2011) Evidence for a causal association for HPV in head and neck cancers. Eur Arch Otorhinolaryngol 268(11):1541–1547. doi:10.1007/s00405-011-1714-8

    Article  PubMed  CAS  Google Scholar 

  18. Verastegui E, Morales R, Barrera JL, Mueller A, Guzman B, Meneses A, Alfaro G (2002) Immunological approach in the evaluation of regional lymph nodes of patients with squamous cell carcinoma of the head and neck. Clin Immunol 102(1):37–47. doi:10.1006/clim.2001.5130

    Article  PubMed  Google Scholar 

  19. Berinstein NL (2009) Strategies to enhance the therapeutic activity of cancer vaccines: using melanoma as a model. Ann NY Acad Sci 1174:107–117. doi:10.1111/j.1749-6632.2009.04935.x

    Article  PubMed  CAS  Google Scholar 

  20. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM (2010) Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 207(10):2175–2186. doi:10.1084/jem.20100637

    Article  PubMed  CAS  Google Scholar 

  21. Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223. doi:10.1146/annurev.immunol.16.1.201

    Article  PubMed  CAS  Google Scholar 

  22. Pure E, Cuff CA (2001) A crucial role for CD44 in inflammation. Trends Mol Med 7(5):213–221

    Article  PubMed  CAS  Google Scholar 

  23. Rosshart S, Hofmann M, Schweier O, Pfaff AK, Yoshimoto K, Takeuchi T, Molnar E, Schamel WW, Pircher H (2008) Interaction of KLRG1 with E-cadherin: new functional and structural insights. Eur J Immunol 38(12):3354–3364. doi:10.1002/eji.200838690

    Article  PubMed  CAS  Google Scholar 

  24. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271. doi:10.1146/annurev-immunol-031210-101324

    Article  PubMed  CAS  Google Scholar 

  25. Wilke CM, Kryczek I, Wei S, Zhao E, Wu K, Wang G, Zou W (2011) Th17 cells in cancer: help or hindrance? Carcinogenesis 32(5):643–649. doi:10.1093/carcin/bgr019

    Article  PubMed  CAS  Google Scholar 

  26. Kesselring R, Thiel A, Pries R, Trenkle T, Wollenberg B (2010) Human Th17 cells can be induced through head and neck cancer and have a functional impact on HNSCC development. Br J Cancer 103(8):1245–1254. doi:10.1038/sj.bjc.6605891

    Article  PubMed  CAS  Google Scholar 

  27. Lopez-Cabrera M, Santis AG, Fernandez-Ruiz E, Blacher R, Esch F, Sanchez-Mateos P, Sanchez-Madrid F (1993) Molecular cloning, expression, and chromosomal localization of the human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type animal lectin superfamily of signal-transmitting receptors. J Exp Med 178(2):537–547

    Article  PubMed  CAS  Google Scholar 

  28. Poulton TA, Gallagher A, Potts RC, Beck JS (1988) Changes in activation markers and cell membrane receptors on human peripheral blood T lymphocytes during cell cycle progression after PHA stimulation. Immunology 64(3):419–425

    PubMed  CAS  Google Scholar 

  29. Henson SM, Franzese O, Macaulay R, Libri V, Azevedo RI, Kiani-Alikhan S, Plunkett FJ, Masters JE, Jackson S, Griffiths SJ, Pircher HP, Soares MV, Akbar AN (2009) KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113(26):6619–6628. doi:10.1182/blood-2009-01-199588

    Article  PubMed  CAS  Google Scholar 

  30. Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP (2005) Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J Immunol 174(10):6088–6094

    PubMed  CAS  Google Scholar 

  31. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD (2006) PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443(7109):350–354. doi:10.1038/nature05115

    Article  PubMed  CAS  Google Scholar 

  32. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, Laccabue D, Zerbini A, Cavalli A, Missale G, Bertoletti A, Ferrari C (2007) Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol 81(8):4215–4225. doi:10.1128/JVI.02844-06

    Article  PubMed  CAS  Google Scholar 

  33. Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K, Minoda Y, Sanada T, Yoshioka T, Mimata H, Kato S, Yoshimura A (2006) IFNgamma-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. J Exp Med 203(6):1391–1397. doi:10.1084/jem.20060436

    Article  PubMed  CAS  Google Scholar 

  34. Matsuda M, Nakamoto Y, Suzuki S, Kurata T, Kaneko S (2005) Interferon-gamma-mediated hepatocarcinogenesis in mice treated with diethylnitrosamine. Lab Invest 85(5):655–663. doi:10.1038/labinvest.3700257

    Article  PubMed  CAS  Google Scholar 

  35. Reiners JJ Jr, Rupp T, Colby A, Cantu AR, Pavone A (1989) Tumor copromoting activity of gamma-interferon in the murine skin multistage carcinogenesis model. Cancer Res 49(5):1202–1206

    PubMed  CAS  Google Scholar 

  36. Xiao M, Wang C, Zhang J, Li Z, Zhao X, Qin Z (2009) IFNgamma promotes papilloma development by up-regulating Th17-associated inflammation. Cancer Res 69(5):2010–2017. doi:10.1158/0008-5472.CAN-08-3479

    Article  PubMed  CAS  Google Scholar 

  37. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238. doi:10.1038/nature04753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Medical Research Service of the Department of Veterans Affairs and by grants RO1 CA128837 and RO1 DE018268 from the National Institutes of Health to MRIY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rita I. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Costa, AM.A., Schuyler, C.A., Walker, D.D. et al. Characterization of the evolution of immune phenotype during the development and progression of squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 61, 927–939 (2012). https://doi.org/10.1007/s00262-011-1154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1154-8

Keywords

Navigation