Skip to main content

Advertisement

Log in

Immunotherapy with IL-10- and IFN-γ-producing CD4 effector cells modulate “Natural” and “Inducible” CD4 TReg cell subpopulation levels: observations in four cases of patients with ovarian cancer

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Adoptive T cell therapy for cancer patients optimally requires participation of CD4 T cells. In this phase I/II study, we assessed the therapeutic effects of adoptively transferred IL-10- and IFN-γ-producing CD4 effector cells in patients with recurrent ovarian cancer. Using MUC1 peptide and IL-2 for ex vivo CD4 effector cell generation, we show that three monthly treatment cycles of autologous T cell restimulation and local intraperitoneal re-infusion-modulated T cell-mediated immune responses that were associated with enhanced patient survival. One patient remains disease-free, another patient experienced prolonged survival for nearly 16 months with recurrent disease, and two patients expired within 3–5 months following final infusion. Prolonged survivors showed elevated levels of systemic CD3+CD4+CD25+ and CD3+CD4+CD25 T cells when compared to that of pre-treatment levels and similarly treated short-term survivors. Such cell populations among these patients contained variable levels of “Inducible” Tr1 (CD4+CD25FoxP3IL-10+) and “Natural” (CD4+CD25+CD45RO+FoxP3+) TReg cell numbers and ratios that were associated with prolonged and/or disease-free survival. Moreover, peptide-restimulated T cells from these patients showed an elevation in both IFN-γ production, memory cell phenotype, and select TNF family ligands associated with enhanced T cell survival and apoptosis-inducing activities. This suggests that intraperitoneally administered Th1-like cells, producing elevated levels of IL-10, may require and/or induce differential levels of distinct systemic TReg subpopulations that influence, in part, long-term tumor immunity and enhanced memory/effector CD4-mediated therapeutic potentials. Furthermore, treatment efficacy and enhanced memory cell phenotype did not appear to be dependent on TReg cell numbers but upon ratios of “Inducible” and “Natural” TReg subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Th1:

CD4+ T cells producing IFN-γ

TReg:

Regulatory T cells

Foxp3:

Forkhead box protein p3

TR1:

CD4+ CD25FoxP3 T cells producing IL-10

nTRegs:

Ag-experienced natural TReg CD4+CD25+CD45RO+FoxP3 cells

References

  1. Jemel A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59:225–249

    Article  Google Scholar 

  2. Yap T, Carden CP, Kaye SB (2009) Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 9:167–181

    Article  PubMed  CAS  Google Scholar 

  3. Nelson BH (2008) The impact of T cell immunity on ovarian cancer outcomes. Immunol Rev 222:101–116

    Article  PubMed  CAS  Google Scholar 

  4. Muranski P, Restifo NP (2009) Adoptive immunotherapy of cancer using CD4+ T cells. Curr Opin Immunol 21:200–208

    Article  PubMed  CAS  Google Scholar 

  5. O’Garra A, Vieira P (2007) Th1 cells control themselves by producing IL-10. Nat Rev Immunol 7:425–428

    Article  PubMed  Google Scholar 

  6. Trinchieri G (2007) IL-10 production by effector T cells: Th1 cells show self control. J Exp Med 204:239–243

    Article  PubMed  CAS  Google Scholar 

  7. Jankovic D, Kugler DG, Sher A (2010) IL-10 production by CD4 effector T cells: a mechanism for self regulation. Mucosal Immunol 3:239–246

    Article  PubMed  CAS  Google Scholar 

  8. Haringer B, Lozza L, Steckel B, Geginat J (2009) Identification and characterization of IL-10/IFN-γ-producing effector-like T cells with regulatory function in human blood. J Exp Med 206:1009–1017

    Article  PubMed  Google Scholar 

  9. Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M, Cazzadori A, Trinchieri G (1999) CD4 T cell clones producing both IFN-γ and IL-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol 92:224–234

    Article  PubMed  CAS  Google Scholar 

  10. Assudani DP, Horton RBV, Mathieu MG, McArdle SEB, Rees RC (2007) The role of CD4+ T cell help in cancer immunity and the formation of novel cancer vaccines. Cancer Immunol Immunther 56:70–80

    Article  Google Scholar 

  11. Kennedy R, Celis E (2008) Multiple roles of CD4 T cells in antitumor responses. Immunological Revs 222:129–144

    Article  CAS  Google Scholar 

  12. Newsbeth YC, Martinez DG, Toraya S, Scarlett UK, Cubillos-Ruiz JR, Rutkowski MR, Conejo-Garcia JR (2010) CD4 T cells elicit host immune responses to MHC Class II-ovarian cancer through CCL5 secretion and CD40 mediated licensing of dendritic cells. J Immunol 184:5654–5662

    Article  Google Scholar 

  13. Perez-Diez A, Joncker NT, Choi K, Chan WFN, Anderson CC, Lantz O, Matzinger P (2007) CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109:5346–5354

    Article  PubMed  CAS  Google Scholar 

  14. Moeller M, Haynes NM, Kershaw MH, Jackson JT, Teng MWL, Street SE, Cerutti L, Jane SM, Trapani JA, Smyth MJ, Darcy PK (2005) Adoptive transfer of gene-engineered CD4 helper T cells induce potent primary and secondary tumor rejection. Blood 106:2995–3003

    Article  PubMed  CAS  Google Scholar 

  15. Liu Z, Noe HS, Chen J, Kim JH, Falo LD Jr, You Z (2008) Potent tumor-specific protection ignited by adoptively transferred CD4 T cells. J Immunol 181:4363–4370

    PubMed  CAS  Google Scholar 

  16. Nesbeth Y, Conejo-Garcia JR (2010) Harnessing the effects of adoptively transferred tumor-reactive T cells on endogenous antitumor responses. Clinical Developmental Immunol. doi:10.155/2010/13904

  17. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C (2008) Treatment of metastatic melanoma with autologous CD4 T cells against NY-ESO-1. N Eng J Med 358:2698–2703

    Article  CAS  Google Scholar 

  18. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767

    PubMed  CAS  Google Scholar 

  19. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Revs Immunol 10:490–500

    Article  CAS  Google Scholar 

  20. Sakaguchi S (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  21. Riley JL, June CH, Blazer BR (2009) Human T regulatory cell therapy: take a billion or so and call me in the morning. Immunity 30:656–665

    Article  PubMed  CAS  Google Scholar 

  22. Buckner JH (2010) Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune disease. Nat Rev Immunol 10:849–859

    Article  PubMed  CAS  Google Scholar 

  23. Shevach EM (2009) Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity 30:636–645

    Article  PubMed  CAS  Google Scholar 

  24. Miyara M, Sakaguchi S (2011) Human FoxP3+CD4+ regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89:346–351

    Article  PubMed  CAS  Google Scholar 

  25. Grazia Roncarolo M, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) IL-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50

    Article  Google Scholar 

  26. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG (1997) A CD4+ T cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature 389:737–742

    Article  PubMed  CAS  Google Scholar 

  27. O’Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL-10 producing and naturally occurring CD4 Tregs: limiting collateral damage. J Clin Invest 114:1372–1378

    PubMed  Google Scholar 

  28. Zou W (2006) Regulatory T cells, tumor immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  29. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burrow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Luckner A, Disis ML, Knutson KL, Chen W, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  30. Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, Gunsilius E, Marth C (2005) The expression of the regulatory T Cell–specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:5380–8326

    Article  Google Scholar 

  31. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) CD4/CD25 + T cells in tumors from patients with early-stage non-small lung cancer and late stage ovarian cancer. Can Res 61:4766–4772

    CAS  Google Scholar 

  32. Dobrzanski MJ, Rewers-Felkins KA, Abdul Samad K, Quinlin IS, Robinson W, Dobrzanski DJ, Wright SE (2009) Autologous MUC1-specific Th1 effector cell immunotherapy induces differential levels of systemic TReg cell populations that result in increased ovarian cancer patient survival. Clin Immunol 133:333–352

    Article  PubMed  CAS  Google Scholar 

  33. Wright SE, Rewers-Felkins KA, Quinlin IS, Eldridge PW, Zorsky PE, Klug P, Phillips CA (2002) Adoptive immunotherapy of mucin1 expressing adenocarcinomas with mucin1 stimulated human peripheral blood mononuclear cells. Int J Mol Med 9:401–404

    PubMed  CAS  Google Scholar 

  34. Wright SE, Khaznadar R, Wang Z, Quinlin IS, Rewers-Felkins KA, Phillips CA, Patel S (2008) Generation of MUC1-stimulated mononuclear cells using optimized conditions. Scand J Immunol 67:24–29

    PubMed  CAS  Google Scholar 

  35. Hiltbold EM, Ciborowski P, Finn OJ (1998) Naturally processed class II epitope from the tumor antigen MUC1 primes human CD4 T cells. Can Res 58:5066–5070

    CAS  Google Scholar 

  36. Dobrzanski MJ, Reome JB, Hylind JC, Rewers-Felkins KL (2006) CD8-mediated type 1 antitumor responses selectively modulate endogenous differentiated and non-differentiated T cell localization, activation and function in progressive breast cancer. J Immunol 177:8191–8201

    PubMed  CAS  Google Scholar 

  37. Croft M (2009) The role of TNF superfamily members in T cell function and diseases. Nat Rev Immunol 9:271–285

    Article  PubMed  CAS  Google Scholar 

  38. O’Garra A, Barrat RJ, Castro AG, Vicari A, Hawrylowicz C (2008) Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 223:114–131

    Article  PubMed  Google Scholar 

  39. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    Article  PubMed  CAS  Google Scholar 

  40. Murai M, Turovskaya O, Kim G, Madan R, Karp CL, Cheroutre H, Kronenberg M (2009) IL-10 acts on regulatory T cells to maintain expression of the transcription factor FoxP3 and suppress function in mice with colitis. Nat Immunol 10:1178–1184

    Article  PubMed  CAS  Google Scholar 

  41. Pierson W, Liston A (2010) A new role for IL-10 in immune regulation. Immunol Cell Biol 88:769–770

    Article  PubMed  Google Scholar 

  42. Jarnicki AG, Lysaght J, Todryk S, Mills KHG (2006) Suppression of antitumor immunity by IL-10 and TGF-β -producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 177:896–904

    PubMed  CAS  Google Scholar 

  43. Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJ, Schreiber S, Gregor M, Ludwiczek O, Rutgeerts P, Gasche C, Koningsberger JC, Abreu L, Kuhn I, Cohard M, LeBeaut A, Grint P, Weiss G (2002) Treatment of Crohn’s disease with recombinant human IL-10 induces the proinflamatory cytokine IFN-γ. Gut 50:191–195

    Article  PubMed  CAS  Google Scholar 

  44. Lauw FN, Pajkrt D, Hack CE, Kurimoto M, van Deventer SJ, van der Poll T (2000) Proinflammatory effects of IL-10 during human endotoxemia. J Immunol 165:2783–2789

    PubMed  CAS  Google Scholar 

  45. Chen WF, Zlotnik A (1991) IL-10: a novel cytotoxic T cell differentiation factor. J Immunol 147:528–534

    PubMed  CAS  Google Scholar 

  46. Groux H, Bigler M, de Vries JE, Roncarolo MG (1998) Inhibitory and stimulatory effects of IL-10 on human CD8 T cells. J Immunol 160:3188–3193

    PubMed  CAS  Google Scholar 

  47. Mocellin S, Marincola FM, Young HA (2005) Interleukin-10 and the immune response against cancer: a counterpoint. J Leukoc Biol 78:1043–1051

    Article  PubMed  CAS  Google Scholar 

  48. Zheng LM, Ojcius DM, Garaud F, Roth C, Maxwell E, Li Z, Rong H, Chen J, Wang XY, Catino JJ, King I (1996) IL-10 inhibits tumor metastasis through an NK cell-dependent mechanism. J Exp Med 184:579–584

    Article  PubMed  CAS  Google Scholar 

  49. Berman RM, Suzuki T, Tahara H, Robbins PD, Narula SK, Lotze MT (1996) Systemic administration of cellular IL-10 induces an effective specific and long lived immune response against established tumors in mice. J Immunol 157:231–238

    PubMed  CAS  Google Scholar 

  50. Fujii S, Shimizu K, Shimizu T, Lotze MT (2001) IL-10 promotes the maintenance of antitumor CD8 T effector cell function in situ. Blood 98:2143–2151

    Article  PubMed  CAS  Google Scholar 

  51. Dobrzanski MJ, Reome JB, Hylind JC, Rewers-Felkins KA, Abdulsamad K, Adams SL (2008) Ag-specific type 1 CD8 effector cells enhance methotrexate-mediated antitumor responses by modulating endogenous CD49b-expressing CD4 and CD8 T effector cell subpopulations producing IL-10. Immunol Invest 37:315–338

    Article  PubMed  CAS  Google Scholar 

  52. Jones M, Ladell K, Wynn KK, Stacey MA, Quiqley MF, Gostick E, Price DA, Humphreys IR (2010) IL-10 restricts memory T cell inflation during cytomegalovirus infection. J Immunol 185:3583–3592

    Article  PubMed  CAS  Google Scholar 

  53. Kang SS, Allen PM (2005) Priming in the presence of IL-10 results in direct enhancement of CD8 T cell primary responses and inhibition of secondary responses. J Immunol 174:5382–5389

    PubMed  CAS  Google Scholar 

  54. Foulds KE, Rotte MJ, Seder RA (2006) IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J Immunol 177:2565–2574

    PubMed  CAS  Google Scholar 

  55. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  PubMed  CAS  Google Scholar 

  56. Nishikawa H, Kato T, Tawara I, Ikeda H, Kuribayashi K, Allen PM, Schreiber RD, Old LJ, Shihu H (2005) IFN-γ controls the generation/activation of CD4+CD25+ regulatory T cells in antitumor immune response. J Immunol 175:4433–4440

    PubMed  CAS  Google Scholar 

  57. Wang Z, Hong J, Sun W, Xu G, Li N, Chen X, Liu A, Xu L, Sun B, Zhang JZ (2006) Role of IFN-γ in induction of Foxp3 and conversion of CD4+CD25 T cells to CD4+ Tregs. J Clin Invest 116:2434–2441

    PubMed  CAS  Google Scholar 

  58. Cao X, Leonard K, Collins LI, Cai SF, Mayer JC, Peyton JE, Walter MJ, Piwnica-Worms D, Schreiber RD, Ley TJ (2009) IL-12 stimulates IFN-g-mediated inhibition of tumor-induced regulatory T cell proliferation and enhances tumor clearance. Can Res 69:8700–8709

    Article  CAS  Google Scholar 

  59. Vukmanovic-Stejic M, Zhang Y, Cook JE, Fletcher JM, McQuaid A, Masters JE, Rustin MHA, Taams LS, Beverley PCL, Macallan DC, Akbar AN (2006) Human CD4+CD25HIFoxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest 116:2423–2433

    Article  PubMed  CAS  Google Scholar 

  60. Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S (2009) Heterogeneity of natural FoxP3 T cells: a committed regulatory T cell lineage and an uncommitted minor population retaining plasticity. PNAS 106:1903–1908

    Article  PubMed  CAS  Google Scholar 

  61. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J (2000) CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 1:433–440

    Article  PubMed  CAS  Google Scholar 

  62. Hendriks J, Xiao Y, Borst J (2003) CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 198:1369–1380

    Article  PubMed  CAS  Google Scholar 

  63. Ramon-Arens R, Schepers K, Nolte MA, van Oosterwijk MF, van Lier RAW, Schumacher TNM, van Oers MHJ (2004) Tumor rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8 T cell formation. J Exp Med 199:1595–1605

    Article  Google Scholar 

  64. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg AD, Colombo MP (2005) Triggering of OX-40 (CD134) and CD4 + CD25 + T cells block their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105:2845–2851

    Article  PubMed  CAS  Google Scholar 

  65. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839

    Article  PubMed  CAS  Google Scholar 

  66. Morel Y, Truneh A, Costello RT, Olive D (2003) LIGHT, a new TNF superfamily member, is essential for memory T helper cell-mediated activation of dendritic cells. Eur J Immunol 33:3213–3219

    Article  PubMed  CAS  Google Scholar 

  67. Morel Y, Truneh A, Sweet RW, Olive D, Costello RT (2001) The TNF superfamily members LIGHT and CD154 (CD40 Ligand) costimulate induction of dendritic cell maturation and elicit specific CTL activity. J Immunol 167:2479–2486

    PubMed  CAS  Google Scholar 

  68. Huang J, Kerstann KW, Ahmadzadeh M, Li YF, El-Gamil M, Rosenberg SA, Robbins PF (2006) Modulation by IL-2 of CD70 and CD27 expression on CD8 T cells: importanance for the therapeutic effectiveness of cell transfer immunotherapy. J Immunol 176:7726–7735

    PubMed  CAS  Google Scholar 

  69. Moira Wilke C, Wu K, Zhao E, Wang G, Zou W (2010) Prognostic significance of regulatory T cells in tumor. Int J Cancer 127:748–758

    Google Scholar 

  70. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman W, Pages F, Galon J (2011) Clinical impact of different classes of infiltrating T cytotoxic and helper cells in patients with colorectal cancer. Can Res 71:1263–1271

    Article  CAS  Google Scholar 

  71. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubek-Loebenstein B (2003) Increase in regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  72. Li X, Ye D, Xie X, Chen H, Lu W (2005) Proportions of CD4 + CD25 + regulatory T cells is increased in patients with ovarian cancer. Cancer Invest 23:399–403

    PubMed  CAS  Google Scholar 

  73. Merlo A, Casalini P, Carcangui ML, Malventano C, Triulzi T, Menard S, Tagliabue E, Balsari A (2009) FoxP3 expression and overall survival in breast cancer. J Clin Oncol 27:1746–1752

    Article  PubMed  CAS  Google Scholar 

  74. Loddenkemper C, Schernus M, Noutsias M, Stein H, Thiel E, Nagorsen D (2006) In situ analysis of FoxP3 regulatory T cells in human colorectal cancer. J Transl Med 4:52–59

    Article  PubMed  Google Scholar 

  75. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor infiltrating FoxP3 + T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    Article  PubMed  Google Scholar 

  76. Erdman SE, Sohn JJ, Roa VP, Nambiar PR, Ge Z, Fox JG, Schauer DB (2005) CD4 + CD25 + regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Can Res Priority Report 65:3998–4004

    CAS  Google Scholar 

  77. Grivennikov SL, Greten FR, Karin M (2010) Immunity, inflammation and cancer. Cell 140:883–899

    Article  PubMed  CAS  Google Scholar 

  78. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA (2008) Adoptive cell therapy for patients with metastatic melanoma: evaluation of intense myeloablative chemoradiation preparative regimens. J Clin Oncol 26:5233–5239

    Article  PubMed  CAS  Google Scholar 

  79. Berger C, Turtle CJ, Jensen MC, Riddell SR (2009) Adoptive transfer of virus-specific and tumor specific T cell immunity. Curr Opin Immunol 21:224–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to those mentioned in the text for supplying materials, Coffee Memorial Blood Bank, Amarillo, TX, under the direction of Mary Townsend, for leukaphereses. Robin McWherter and Beth Vertin for technical assistance and the Clinical Trials Department of the Harrington Cancer Center, Amarillo, TX, for data collection. This work was supported by grants through the Harrington Cancer Research Foundation, Amarillo, TX (to M.J.D.), Department of Veterans Affairs Medical Research Program (to S.E.W.), Institutional Research Program of the Texas Tech School of Medicine (to M.J.D.), National Institutes of Health Grant 1R21CA89883-01A1 (to W.R. and S.E.W), Department of Defense Medical Research Development Command DAMD 17-01-1-0429 (to M.J.D.) and the Don & Sybil Harrington Foundation, Amarillo, TX (to S.E.W. and C.A.P.).

Conflict of interest

None of the authors have any potential financial conflict of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark J. Dobrzanski or Stephen E. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrzanski, M.J., Rewers-Felkins, K.A., Samad, K.A. et al. Immunotherapy with IL-10- and IFN-γ-producing CD4 effector cells modulate “Natural” and “Inducible” CD4 TReg cell subpopulation levels: observations in four cases of patients with ovarian cancer. Cancer Immunol Immunother 61, 839–854 (2012). https://doi.org/10.1007/s00262-011-1128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1128-x

Keywords

Navigation