Skip to main content

Advertisement

Log in

Signals through 4-1BB inhibit T regulatory cells by blocking IL-9 production enhancing antitumor responses

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Previous studies from our laboratory indicate that intratumoral (i.t.) injections of CpG-ODN are the most effective adjuvant strategy to induce an antitumor immune response in tolerant BALB-neuT mice but insufficient for tumor eradication. We evaluated whether this treatment strategy could be enhanced by the presence of anti-OX40 and anti-4-1BB antibodies. Treatment with anti-4-1BB resulted in a greater antitumor response than anti-OX40. The results indicate that anti-4-1BB but not anti-OX40 inhibited the suppressive function of T regulatory cells (Tregs). Through microarray analysis we evaluated the mechanism by which anti-4-1BB inhibits iTregs using the Foxp3-GFP mice. We observed specific transcriptional differences in over 100 genes in iTregs treated with anti-4-1BB, and selected those genes that remained unaffected by exposure to anti-OX40. Interleukin 9 was transcriptionally down-regulated 28-fold by anti-4-1BB treatment, and this was matched by a significant reduction of IL-9 secretion by iTregs. Furthermore, blockade of the common γ-chain receptor resulted in the inhibition of iTreg-suppressive function. More importantly, neutralization of IL-9 plus i.t. injections of CpG-ODN induces tumor rejection in BALB-neuT and MUC-1 tolerant transgenic mice. These results indicate that IL-9 plays a role in iTreg biology during the tumor inflammatory process enhancing/promoting the suppressive function of these cells and that the blockade of IL-9 could serve as a novel strategy to modulate the function of Tregs to enhance the antitumor effect of tumor vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gross S, Walden P (2008) Immunosuppressive mechanisms in human tumors: why we still cannot cure cancer. Immunol Lett 116:7–14

    Article  PubMed  CAS  Google Scholar 

  2. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  3. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58:449–459

    Article  PubMed  Google Scholar 

  4. Horwitz DA, Zheng SG, Gray JD (2008) Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol 29:429–435

    Article  PubMed  CAS  Google Scholar 

  5. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM (2003) Conversion of peripheral CD4 + CD25− naive T cells to CD4 + CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  PubMed  CAS  Google Scholar 

  6. Zhou G, Levitsky HI (2007) Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol 178:2155–2162

    PubMed  CAS  Google Scholar 

  7. Wada J, Suzuki H, Fuchino R, Yamasaki A, Nagai S, Yanai K, Koga K, Nakamura M, Tanaka M, Morisaki T, Katano M (2009) The contribution of vascular endothelial growth factor to the induction of regulatory T-cells in malignant effusions. Anticancer Res 29:881–888

    PubMed  CAS  Google Scholar 

  8. Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59:3128–3133

    PubMed  CAS  Google Scholar 

  9. Kretschmer K, Apostolou I, Verginis P, von Boehmer H (2008) Regulatory T cells and antigen-specific tolerance. Chem Immunol Allergy 94:8–15

    Article  PubMed  CAS  Google Scholar 

  10. Dominguez AL, Lustgarten J (2008) Implications of aging and self-tolerance on the generation of immune and antitumor immune responses. Cancer Res 68:5423–5431

    Article  PubMed  CAS  Google Scholar 

  11. Hoelzinger DB, Smith SE, Mirza N, Dominguez AL, Manrique SZ, Lustgarten J (2010) Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing tumor immunity without affecting T effector responses. J Immunol 184:6833–6842

    Article  PubMed  CAS  Google Scholar 

  12. Couper KN, Lanthier PA, Perona-Wright G, Kummer LW, Chen W, Smiley ST, Mohrs M, Johnson LL (2009) Anti-CD25 antibody-mediated depletion of effector T cell populations enhances susceptibility of mice to acute but not chronic Toxoplasma gondii infection. J Immunol 182:3985–3994

    Article  PubMed  CAS  Google Scholar 

  13. Barton G, Medzhitov R (2002) Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 14:380–383

    Article  PubMed  CAS  Google Scholar 

  14. Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophy Acta 1589:1–13

    Article  CAS  Google Scholar 

  15. Huang Q, Liu D, Majewski P, Schulte L, Korn J, Young R, Lander E, Hacohen N (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294:870–875

    Article  PubMed  CAS  Google Scholar 

  16. Takeda K, Akira S (2003) Toll receptors and pathogen resistance. Cell Microbiol 5:143–153

    Article  PubMed  CAS  Google Scholar 

  17. Sharma S, Dominguez AL, Manrique SZ, Cavallo F, Sakaguchi S, Lustgarten J (2008) Systemic targeting of CpG-ODN to the tumor microenvironment with anti-neu-CpG hybrid molecule and T regulatory cell depletion induces memory responses in BALB-neuT tolerant mice. Cancer Res 68:7530–7540

    Article  PubMed  CAS  Google Scholar 

  18. Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68

    Article  PubMed  CAS  Google Scholar 

  19. Cuadros C, Dominguez AL, Frost GI, Borgstrom P, Lustgarten J (2003) Cooperative effect between immunotherapy and antiangiogenic therapy leads to effective tumor rejection in tolerant Her-2/neu mice. Cancer Res 63:5895–5901

    PubMed  CAS  Google Scholar 

  20. Cuadros C, Dominguez AL, Lollini PL, Croft M, Mittler RS, Borgstrom P, Lustgarten J (2005) Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4-1BB monoclonal antibodies induces T cell-mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer 116:934–943

    Article  PubMed  CAS  Google Scholar 

  21. Lustgarten J, Dominguez AL, Cuadros C (2004) The CD8 + T cell repertoire against Her-2/neu antigens in neu transgenic mice is of low avidity with antitumor activity. Eur J Immunol 34:752–761

    Article  PubMed  CAS  Google Scholar 

  22. Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E, Porcedda P, Boggio K, Smorlesi A, Lollini PL et al (2000) DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165:5133–5142

    PubMed  CAS  Google Scholar 

  23. Xia J, Tanaka Y, Koido S, Liu C, Mukherjee P, Gendler SJ, Gong J (2003) Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol 170:1980–1986

    PubMed  CAS  Google Scholar 

  24. Fontenot J, Rasmussen J, Williams L, Dooley J, Farr A, Rudensky A (2005) Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22:329–341

    Article  PubMed  CAS  Google Scholar 

  25. Choi BK, Bae JS, Choi EM, Kang WJ, Sakaguchi S, Vinay DS, Kwon BS (2004) 4-1BB-dependent inhibition of immunosuppression by activated CD4 + CD25 + T cells. J Leukoc Biol 75:785–791

    Article  PubMed  CAS  Google Scholar 

  26. Valzasina B, Guiducci C, Dislich H, Killeen N, Weinberg A, Colombo M (2005) Triggering of OX40 (CD134) on CD4(+)CD25 + T cells blocks their inhibitory activity: a novel regulatory role for OX40 and the comparison with GITR. Blood 105:2845–2851

    Article  PubMed  CAS  Google Scholar 

  27. Noelle RJ, Nowak EC (2010) Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 10:683–687

    Article  PubMed  CAS  Google Scholar 

  28. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    Article  PubMed  CAS  Google Scholar 

  29. Cooper D, Bansal-Pakala P, Croft M (2002) 4-1BB (CD137) controls the clonal expansion and survival of CD8 T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol 32:521–529

    Article  PubMed  CAS  Google Scholar 

  30. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839

    Article  PubMed  CAS  Google Scholar 

  31. Piconese S, Pittoni P, Burocchi A, Gorzanelli A, Care A, Tripodo C, Colombo MP (2010) A non-redundant role for OX40 in the competitive fitness of Treg in response to IL-2. Eur J Immunol 40:2902–2913

    Article  PubMed  Google Scholar 

  32. Ruby CE, Yates MA, Hirschhorn-Cymerman D, Chlebeck P, Wolchok JD, Houghton AN, Offner H, Weinberg AD (2009) Cutting edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 183:4853–4857

    Article  PubMed  CAS  Google Scholar 

  33. Lu LF, Lind EF, Gondek DC, Bennett KA, Gleeson MW, Pino-Lagos K, Scott ZA, Coyle AJ, Reed JL, Van Snick J et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  PubMed  CAS  Google Scholar 

  34. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    Article  PubMed  CAS  Google Scholar 

  35. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC et al (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3 + natural regulatory T cells. Proc Natl Acad Sci USA 106:12885–12890

    Article  PubMed  CAS  Google Scholar 

  36. Fukushima A, Yamaguchi T, Ishida W, Fukata K, Mittler RS, Yagita H, Ueno H (2005) Engagement of 4-1BB inhibits the development of experimental allergic conjunctivitis in mice. J Immunol 175:4897–4903

    PubMed  CAS  Google Scholar 

  37. Sun Y, Blink SE, Liu W, Lee Y, Chen B, Solway J, Weinstock J, Chen L, Fu YX (2006) Inhibition of Th2-mediated allergic airway inflammatory disease by CD137 costimulation. J Immunol 177:814–821

    PubMed  CAS  Google Scholar 

  38. Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9:480–490

    Article  PubMed  CAS  Google Scholar 

  39. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, Laurence A, Robinson GW, Shevach EM, Moriggl R et al (2007) Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109:4368–4375

    Article  PubMed  CAS  Google Scholar 

  40. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA (2007) IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3 + regulatory T cells. J Immunol 178:280–290

    PubMed  CAS  Google Scholar 

  41. Townsend JM, Fallon GP, Matthews JD, Smith P, Jolin EH, McKenzie NA (2000) IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13:573–583

    Article  PubMed  CAS  Google Scholar 

  42. Sharma S, Dominguez AL, Hoelzinger DB, Lustgarten J (2008) CpG-ODN but not other TLR-ligands restore the antitumor responses in old mice: the implications for vaccinations in the aged. Cancer Immunol Immunother 57:549–561

    Article  PubMed  CAS  Google Scholar 

  43. Eller K, Wolf D, Huber JM, Metz M, Mayer G, McKenzie AN, Maurer M, Rosenkranz AR, Wolf AM (2011) IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J Immunol 186:83–91

    Article  PubMed  CAS  Google Scholar 

  44. Nowak EC, Weaver CT, Turner H, Begum-Haque S, Becher B, Schreiner B, Coyle AJ, Kasper LH, Noelle RJ (2009) IL-9 as a mediator of Th17-driven inflammatory disease. J Exp Med 206:1653–1660

    Article  PubMed  CAS  Google Scholar 

  45. White B, Leon F, White W, Robbie G (2009) Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther 31:728–740

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants CA 114336 and AG287510 from the National Institutes of Health and American Federation for Aging Research (AFAR) to J.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Lustgarten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, S.E., Hoelzinger, D.B., Dominguez, A.L. et al. Signals through 4-1BB inhibit T regulatory cells by blocking IL-9 production enhancing antitumor responses. Cancer Immunol Immunother 60, 1775–1787 (2011). https://doi.org/10.1007/s00262-011-1075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1075-6

Keywords

Navigation