Skip to main content

Advertisement

Log in

Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Dendritic cell (DC) vaccine has been used to treat patients with advanced colorectal cancer (CRC). The results of vaccine-induced clinical responses have not always been satisfactory partially because of DC incompetence. In order to evaluate the feasibility of novel mature DCs for therapeutic adjuvants against CRC, we conducted clinical trials with carcinoembryonic antigen (CEA) peptide-loaded DC quickly generated with a combination of OK432 (Streptococcuspyogenes preparation), prostanoid, and interferon-α (OPA-DC). In the ten patients enrolled in this study, the OPA-DC vaccine was well tolerated and administered four times every 2 weeks except for two patients, who were switched to other treatments due to disease progression. Among the eight evaluable patients, one displayed stable disease (SD), while the remaining seven showed progressive disease (PD). In the SD patient, natural killer (NK) cell frequency and cytolytic activity were increased. In the same patient, the frequency of CEA-specific cytotoxic T cells (CTLs) increased stepwise with repetitive vaccinations; however, most of the CTLs exhibited central memory phenotype. In those with PD, NK cells proliferated well regardless of failure of response, whereas CTLs failed to do so. We concluded that the OPA-DC vaccine is well tolerated and has immune-stimulatory capacity in patients with CRC. Additional modulation is needed to attain significant clinical impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hwang J, Marshall JL (2006) Targeted therapy for colorectal cancer. Curr Opin Investig Drugs 7(12):1062–1066

    PubMed  CAS  Google Scholar 

  2. de Vries IJM, Lesterhuis WJ, Scharenborg NM, Engelen LPH, Ruiter DJ, Gerritsen M-JP, Croockewit S, Britten CM, Torensma R, Adema GJ, Figdor CG, Punt CJA (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091–5100

    PubMed  Google Scholar 

  3. Vilella R, Benítez D, Milà J, Lozano M, Vilana R, Pomes J, Tomas X, Costa J, Vilalta A, Malvehy J, Puig S, Mellado B, Martí R, Castel T (2004) Pilot study of treatment of biochemotherapy-refractory stage IV melanoma patients with autologous dendritic cells pulsed with a heterologous melanoma cell line lysate. Cancer Immunol Immunother 53(7):651–658. doi:10.1007/s00262-003-0495-3

    Article  PubMed  CAS  Google Scholar 

  4. Lee AW, Truong T, Bickham K, Fonteneau J-F, Larsson M, Da Silva I, Somersan S, Thomas EK, Bhardwaj N (2002) A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine 20(Suppl 4):A8–A22

    Article  PubMed  CAS  Google Scholar 

  5. Mbawuike IN, Fujihashi K, DiFabio S, Kawabata S, McGhee JR, Couch RB, Kiyono H (1999) Human interleukin-12 enhances interferon-gamma-producing influenza-specific memory CD8+ cytotoxic T lymphocytes. J Infect Dis 180(5):1477–1486. doi:10.1086/315090

    Article  PubMed  CAS  Google Scholar 

  6. Alli RS, Khar A (2004) Interleukin-12 secreted by mature dendritic cells mediates activation of NK cell function. FEBS Lett 559(1–3):71–76. doi:10.1016/S0014-5793(04)00026-2

    Article  PubMed  CAS  Google Scholar 

  7. Dredge K, Marriott JB, Todryk SM, Dalgleish AG (2002) Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol Immunother 51(10):521–531. doi:10.1007/s00262-002-0309-z

    Article  PubMed  CAS  Google Scholar 

  8. Toes RE, Offringa R, Feltkamp MC, Visseren MJ, Schoenberger SP, Melief CJ, Kast WM (1994) Tumor rejection antigens and tumor specific cytotoxic T lymphocytes. Behring Inst Mitt Jul(94):72–86

  9. Sakakibara M, Kanto T, Inoue M, Kaimori A, Yakushijin T, Miyatake H, Itose I, Miyazaki M, Kuzushita N, Hiramatsu N, Takehara T, Kasahara A, Hayashi N (2006) Quick generation of fully mature dendritic cells from monocytes with OK432, low-dose prostanoid, and interferon-alpha as potent immune enhancers. J Immunother 29(1):67–77

    Article  PubMed  CAS  Google Scholar 

  10. Pandha HS, John RJ, Hutchinson J, James N, Whelan M, Corbishley C, Dalgleish AG (2004) Dendritic cell immunotherapy for urological cancers using cryopreserved allogeneic tumour lysate-pulsed cells: a phase I/II study. BJU Int 94(3):412–418. doi:10.1111/j.1464-410X.2004.04922.x

    Article  PubMed  CAS  Google Scholar 

  11. Babatz J, Röllig C, Löbel B, Folprecht G, Haack M, Günther H, Köhne C-H, Ehninger G, Schmitz M, Bornhäuser M (2006) Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer immunology, immunotherapy CII 55(3):268–276. doi:10.1007/s00262-005-0021-x

    Article  PubMed  CAS  Google Scholar 

  12. Liu K-J, Wang C–C, Chen L-T, Cheng A-L, Lin D-T, Wu Y-C, Yu W-L, Hung Y-M, Yang H-Y, Juang S-H, Whang-Peng J (2004) Generation of carcinoembryonic antigen (CEA)-specific T-cell responses in HLA-A*0201 and HLA-A*2402 late-stage colorectal cancer patients after vaccination with dendritic cells loaded with CEA peptides. Clin Cancer Res 10(8):2645–2651

    Google Scholar 

  13. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  PubMed  CAS  Google Scholar 

  14. Syrbe U, Siveke J, Hamann A (1999) Th1/Th2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin Immunopathol 21(3):263–285

    Article  PubMed  CAS  Google Scholar 

  15. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712. doi:10.1038/44385

    Article  PubMed  CAS  Google Scholar 

  16. Marcusson-Stahl M, Cederbrant K (2003) A flow-cytometric NK-cytotoxicity assay adapted for use in rat repeated dose toxicity studies. Toxicology 193(3):269–279

    Article  PubMed  CAS  Google Scholar 

  17. West E, Morgan R, Scott K, Merrick A, Lubenko A, Pawson D, Selby P, Hatfield P, Prestwich R, Fraser S, Eves D, Anthoney A, Twelves C, Beirne D, Patel P, O’Donnell D, Watt S, Waller M, Dietz A, Robinson P, Melcher A (2009) Clinical grade OK432-activated dendritic cells: in vitro characterization and tracking during intralymphatic delivery. J Immunother 32(1):66–78. doi:10.1097/CJI.0b013e31818be071

    Article  PubMed  CAS  Google Scholar 

  18. Clarke SL, Betts GJ, Plant A, Wright KL, El-Shanawany TM, Harrop R, Torkington J, Rees BI, Williams GT, Gallimore AM, Godkin AJ (2006) CD4+ CD25+ FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 1:e129. doi:10.1371/journal.pone.0000129

    Article  PubMed  Google Scholar 

  19. Correale P, Rotundo MS, Del Vecchio MT, Remondo C, Migali C, Ginanneschi C, Tsang KY, Licchetta A, Mannucci S, Loiacono L, Tassone P, Francini G, Tagliaferri P (2010) Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother 33(4):435–441. doi:10.1097/CJI.0b013e3181d32f01

    Article  PubMed  Google Scholar 

  20. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27(2):186–192. doi:10.1200/JCO.2008.18.7229

    Article  PubMed  Google Scholar 

  21. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9(2):606–612

    PubMed  Google Scholar 

  22. Lesterhuis WJ, De Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH, De Boer A, Scharenborg NM, Van De Rakt M, Hesselink EJ, Figdor CG, Adema GJ, Punt CJ (2010) Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res 30(12):5091–5097

    PubMed  Google Scholar 

  23. Ueda Y, Itoh T, Fuji N, Harada S, Fujiki H, Shimizu K, Shiozaki A, Iwamoto A, Shimizu T, Mazda O, Kimura T, Sonoda Y, Taniwaki M, Yamagishi H (2007) Successful induction of clinically competent dendritic cells from granulocyte colony-stimulating factor-mobilized monocytes for cancer vaccine therapy. Cancer Immunol Immunother CII 56(3):381–389. doi:10.1007/s00262-006-0197-8

    Article  Google Scholar 

  24. Matsuda K, Tsunoda T, Tanaka H, Umano Y, Tanimura H, Nukaya I, Takesako K, Yamaue H (2004) Enhancement of cytotoxic T-lymphocyte responses in patients with gastrointestinal malignancies following vaccination with CEA peptide-pulsed dendritic cells. Cancer Immunol Immunother CII 53(7):609–616. doi:10.1007/s00262-003-0491-7

    Article  CAS  Google Scholar 

  25. Koski GK, Cohen PA, Roses RE, Xu S, Czerniecki BJ (2008) Reengineering dendritic cell-based anti-cancer vaccines. Immunol Rev 222:256–276. doi:10.1111/j.1600-065X.2008.00617.x

    Article  PubMed  CAS  Google Scholar 

  26. Dauer M, Lam V, Arnold H, Junkmann J, Kiefl R, Bauer C, Schnurr M, Endres S, Eigler A (2008) Combined use of toll-like receptor agonists and prostaglandin E(2) in the FastDC model: rapid generation of human monocyte-derived dendritic cells capable of migration and IL-12p70 production. J Immunol Methods 337(2):97–105. doi:10.1016/j.jim.2008.07.003

    Article  PubMed  CAS  Google Scholar 

  27. Dauer M, Obermaier B, Herten J, Haerle C, Pohl K, Rothenfusser S, Schnurr M, Endres S, Eigler A (2003) Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 170(8):4069–4076

    PubMed  CAS  Google Scholar 

  28. Anguille S, Smits ELJM, Cools N, Goossens H, Berneman ZN, Van Tendeloo VFI (2009) Short-term cultured, interleukin-15 differentiated dendritic cells have potent immunostimulatory properties. J Transl Med 7:109. doi:10.1186/1479-5876-7-109

    Article  PubMed  Google Scholar 

  29. Avigan DE, Vasir B, George DJ, Oh WK, Atkins MB, McDermott DF, Kantoff PW, Figlin RA, Vasconcelles MJ, Xu Y, Kufe D, Bukowski RM (2007) Phase I/II study of vaccination with electrofused allogeneic dendritic cells/autologous tumor-derived cells in patients with stage IV renal cell carcinoma. J Immunother 30(7):749–761. doi:10.1097/CJI.0b013e3180de4ce8

    Article  PubMed  Google Scholar 

  30. Berntsen A, Trepiakas R, Wenandy L, Geertsen PF, thor Straten P, Andersen MH, Pedersen AE, Claesson MH, Lorentzen T, Johansen JS, Svane IM (2008) Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother 31(8):771–780. doi:10.1097/CJI.0b013e3181833818

    Article  PubMed  CAS  Google Scholar 

  31. Burgdorf SK, Fischer A, Myschetzky PS, Munksgaard SB, Zocca M-B, Claesson MH, Rosenberg J (2008) Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine. Oncol Rep 20(6):1305–1311

    PubMed  Google Scholar 

  32. Trepiakas R, Berntsen A, Hadrup SR, Bjørn J, Geertsen PF, Straten PT, Andersen MH, Pedersen AE, Soleimani A, Lorentzen T, Johansen JS, Svane IM (2010) Vaccination with autologous dendritic cells pulsed with multiple tumor antigens for treatment of patients with malignant melanoma: results from a phase I/II trial. Cytotherapy. doi:10.3109/14653241003774045

  33. Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, Schillinger B, Liu W, Lu Y, Mitsky P, Schilling M, Bercovici N, Loudovaris M, Guillermo R, Lee SM, Bender J, Mills B, Fong L (2007) Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother 30(7):762–772. doi:10.1097/CJI.0b013e318133451c

    Article  PubMed  CAS  Google Scholar 

  34. Babatz J, Röllig C, Löbel B, Folprecht G, Haack M, Günther H, Köhne C-H, Ehninger G, Schmitz M, Bornhäuser M (2006) Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol Immunother 55(3):268–276. doi:10.1007/s00262-005-0021-x

    Article  PubMed  CAS  Google Scholar 

  35. Jinushi M, Takehara T, Kanto T, Tatsumi T, Groh V, Spies T, Miyagi T, Suzuki T, Sasaki Y, Hayashi N (2003) Critical role of MHC class I-related chain A and B expression on IFN-alpha-stimulated dendritic cells in NK cell activation: impairment in chronic hepatitis C virus infection. J Immunol 170(3):1249–1256

    PubMed  CAS  Google Scholar 

  36. Osada T, Clay T, Hobeika A, Lyerly HK, Morse MA (2006) NK cell activation by dendritic cell vaccine: a mechanism of action for clinical activity. Cancer Immunol Immunother 55(9):1122–1131. doi:10.1007/s00262-005-0089-3

    Article  PubMed  Google Scholar 

  37. Shimizu K, Fujii S (2009) DC therapy induces long-term NK reactivity to tumors via host DC. Eur J Immunol 39(2):457–468. doi:10.1002/eji.200838794

    Article  PubMed  CAS  Google Scholar 

  38. Perret R, Ronchese F (2008) Memory T cells in cancer immunotherapy: which CD8 T-cell population provides the best protection against tumours? Tissue Antigens 72(3):187–194. doi:10.1111/j.1399-0039.2008.01088.x

    Article  PubMed  CAS  Google Scholar 

  39. Mortarini R, Piris A, Maurichi A, Molla A, Bersani I, Bono A, Bartoli C, Santinami M, Lombardo C, Ravagnani F, Cascinelli N, Parmiani G, Anichini A (2003) Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 63(10):2535–2545

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of MTR, especially to the following Drs. Toshiki Yoshimine (Director), Yoshiki Sawa (Director), Akira Myoui (Vice Director), ChunMan Lee, Junji Kawada, Haruki Ide, and Masao Umegaki (Project Managers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Kanto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (EPS 3375 kb)

Supplementary material 2 (EPS 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakakibara, M., Kanto, T., Hayakawa, M. et al. Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide. Cancer Immunol Immunother 60, 1565–1575 (2011). https://doi.org/10.1007/s00262-011-1051-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1051-1

Keywords

Navigation