Skip to main content

Advertisement

Log in

Skin tumor responsiveness to interleukin-2 treatment and CD8 Foxp3+ T cell expansion in an immunocompetent mouse model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Recombinant human interleukin-2 (rhIL-2) therapy is approved for treating patients with advanced melanoma yet significant responses are observed in only 10–15% of patients. Interleukin-2 induces Foxp3 expression in activated human CD8 T cells in vitro and expands circulating CD8 Foxp3+ T cells in melanoma patients. Employing IL-2 responsive (B16-F1, B16-BL6, JB/MS, MCA-205) and nonresponsive (JB/RH, B16-F10) subcutaneous tumor mouse models, we evaluated CD8 Foxp3+ T cell distribution and changes in response to rhIL-2 (50,000 U, i.p. or s.q., twice daily for 5 days). In tumor-free mice and subcutaneous tumor-bearing mouse models, CD8 Foxp3+ T cells were a rare but naturally occurring cell subset. Primarily located in skin-draining lymph nodes, CD8 Foxp3+ T cells expressed both activated T cell (CD28+, CD44+) and Treg (CTLA4+, PD1lo/var, NKG2A+/var) markers. Following treatment with rhIL-2, a dramatic increase in CD8 Foxp3+ T cell prevalence was observed in the circulation and tumor-draining lymph nodes (TD.LNs) of animals bearing IL-2 nonresponsive tumors, while no significant changes were observed in the circulation and TD.LNs of animals bearing IL-2 responsive tumors. These findings suggest expansion of CD8 Foxp3+ T cell population in response to rhIL-2 treatment may serve as an early marker for tumor responsiveness to immunotherapy in an immune competent model. Additionally, these data may provide insight to predict response in patients with melanoma undergoing rhIL-2 treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Yang AS, Chapman PB (2009) The history and future of chemotherapy for melanoma. Hematol Oncol Clin North Am 23:583–597

    Article  PubMed  Google Scholar 

  3. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, Abrams J et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    PubMed  CAS  Google Scholar 

  4. Riker AI, Radfar S, Liu S, Wang Y, Khong HT (2007) Immunotherapy of melanoma: a critical review of current concepts and future strategies. Expert Opin Biol Ther 7:345–358

    Article  PubMed  CAS  Google Scholar 

  5. Sparano JA, Fisher RI, Sunderland M, Margolin K, Ernest ML, Sznol M, Atkins MB et al (1993) Randomized phase III trial of treatment with high-dose interleukin-2 either alone or in combination with interferon alfa-2a in patients with advanced melanoma. J Clin Oncol 11:1969–1977

    PubMed  CAS  Google Scholar 

  6. Taylor RC, Patel A, Panageas KS, Busam KJ, Brady MS (2007) Tumor-infiltrating lymphocytes predict sentinel lymph node positivity in patients with cutaneous melanoma. J Clin Oncol 25:869–875

    Article  PubMed  Google Scholar 

  7. Oble DA, Loewe R, Yu P, Mihm MC Jr (2009) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun 9:3

    PubMed  Google Scholar 

  8. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    Article  PubMed  CAS  Google Scholar 

  9. Waldmann TA, Dubois S, Tagaya Y (2001) Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105–110

    PubMed  CAS  Google Scholar 

  10. Ahmadzadeh M, Antony PA, Rosenberg SA (2007) IL-2 and IL-15 each mediate de novo induction of FOXP3 expression in human tumor antigen-specific CD8 T cells. J Immunother 30:294–302

    Article  PubMed  CAS  Google Scholar 

  11. Gavin MA, Torgerson TR, Houston E, DeRoos P, Ho WY, Stray-Pedersen A, Ocheltree EL et al (2006) Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci USA 103:6659–6664

    Article  PubMed  CAS  Google Scholar 

  12. Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4 + CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  13. Wildin RS, Smyk-Pearson S, Filipovich AH (2002) Clinical and molecular features of the immuno dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet 39:537–545

    Article  PubMed  CAS  Google Scholar 

  14. Torgerson TR, Ochs HD (2007) Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forehead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol 120:744–750 (quiz 751–742)

    Article  PubMed  CAS  Google Scholar 

  15. Fidler IJ (1973) Selection of successive tumour lines for metastasis. Nat New Biol 242:148–149

    PubMed  CAS  Google Scholar 

  16. Nakayama J, Urabe K, Tsuchida T, Urabe A, Terao H, Taniguchi S, Hori Y (1995) Differential cell- and immuno-biological properties of murine B16-F1 and F10 melanomas: oncogene c-fos expression, sensitivity to LAK cells and/or IL-2, and components of gangliosides. J Dermatol 22:549–559

    PubMed  CAS  Google Scholar 

  17. Berkelhammer J, Luethans TN, Hook RR Jr, Oxenhandler RW (1986) Phenotypic instability of mouse melanomas after propagation in vivo and in vitro. Cancer Res 46:2923–2928

    PubMed  CAS  Google Scholar 

  18. Rosenberg SA, Schwarz SL, Spiess PJ (1988) Combination immunotherapy for cancer: synergistic antitumor interactions of interleukin-2, alfa interferon, and tumor-infiltrating lymphocytes. J Natl Cancer Inst 80:1393–1397

    Article  PubMed  CAS  Google Scholar 

  19. Cortesini R, LeMaoult J, Ciubotariu R, Cortesini NS (2001) CD8 + CD28- T suppressor cells and the induction of antigen-specific, antigen-presenting cell-mediated suppression of Th reactivity. Immunol Rev 182:201–206

    Article  PubMed  CAS  Google Scholar 

  20. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci USA 105:7797–7802

    Article  PubMed  CAS  Google Scholar 

  21. Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T (2011) CD8 + Foxp3+ T cells share developmental and phenotypic features with classical CD4 + Foxp3 + regulatory T cells but lack potent suppressive activity. Eur J Immunol 41:716–725

    Article  PubMed  CAS  Google Scholar 

  22. Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223

    Article  PubMed  CAS  Google Scholar 

  23. Suciu-Foca N, Berloco P, Cortesini R (2009) Tolerogenic dendritic cells in cancer, transplantation, and autoimmune diseases. Hum Immunol 70:277–280

    Article  PubMed  CAS  Google Scholar 

  24. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    PubMed  CAS  Google Scholar 

  25. Faunce DE, Terajewicz A, Stein-Streilein J (2004) Cutting edge: in vitro-generated tolerogenic APC induce CD8 + T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis. J Immunol 172:1991–1995

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from The Carolinas Healthcare Foundation (DMF). JB/MS and JB/RH were donated by Dr. Esteban Celis (H. Lee Moffitt Cancer Center, Tampa FL). The MCA-205 cell line was a generous gift from Dr. Alfred Chang (University of Michigan, Ann Arbor, MI). Highly purified rhIL-2 was a gift from Chiron Corporation (Emeryville, CA). We thank Perla Nunes for technical assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain H. McKillop.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 434 kb)

Supplementary material 2 (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foureau, D.M., McKillop, I.H., Jones, C.P. et al. Skin tumor responsiveness to interleukin-2 treatment and CD8 Foxp3+ T cell expansion in an immunocompetent mouse model. Cancer Immunol Immunother 60, 1347–1356 (2011). https://doi.org/10.1007/s00262-011-1035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1035-1

Keywords

Navigation