Skip to main content
Log in

Lung T-cell subset composition at the time of surgical resection is a prognostic indicator in non-small cell lung cancer

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

NSCLC arises in the complex environment of chronic inflammation. Depending on lung immune polarization, infiltrating immune cells may either promote or suppress tumor growth. Despite the importance of the immune microenvironment, current staging techniques for NSCLC do not take into consideration the immune milieu in which the neoplasms arise. T-cell subset content was compared between paired tumor-bearing and contralateral lungs, patient and control peripheral blood. The relationship between T-cell subset distribution and survival were evaluated. CD4 and CD8+ T cells were subsetted by CD45RA/CD27 and analyzed for expression of activation, adhesion, and homing markers. Strikingly, T-cell content was indistinguishable between lungs. Compared with peripheral blood, naïve CD4 and CD8 T cells were rare in BAL. CD4+ BAL T cells showed increased CD95 (higher apoptotic potential) and CD103 expression (epithelial adhesion), but decreased CD38 (activation) and CCR7 expression (lymph node homing). CD8+ BAL T cells showed increased CD103 expression and decreased CD28 expression (co-stimulation). Differences in CD28, CD95, and CCR7 expression were more pronounced within memory cells, while differences in CD4+ CD103 expression were more prominent in effector/memory cells. Of these populations, the absence of lung CD4 T cells with an effector-like phenotype (CD45RA+/CD27−) emerged as a predictor of favorable outcome. Patients with a low proportion (≤0.44%) had 90% 5-year survival (n = 10, median survival 2,343 days), compared with 0% (n = 9, median survival 516 days) of patients with a higher proportion. Further study is required to confirm this association prospectively and define the function of this subpopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Mountain CF (1997) Revisions in the international system for staging lung cancer. Chest 111:1710–1718

    Article  PubMed  CAS  Google Scholar 

  3. Gastman BR, Atarashi Y, Reichert TE, Saito T, Balkir L, Rabinowich H, Whiteside TL (1999) Fas ligand is expressed on human squamous cell carcinomas of the head and neck, and it promotes apoptosis of T lymphocytes. Cancer Res 59:5356–5364

    PubMed  CAS  Google Scholar 

  4. Whiteside TL (2010) Immune responses to malignancies. J Allergy Clin Immunol 125:S272–S283

    Article  PubMed  Google Scholar 

  5. Johansson M, Denardo DG, Coussens LM (2008) Polarized immune responses differentially regulate cancer development. Immunol Rev 222:145–154

    Article  PubMed  CAS  Google Scholar 

  6. Asselin-Paturel C, Echchakir H, Carayol G, Gay F, Opolon P, Grunenwald D, Chouaib S, Mami-Chouaib F (1998) Quantitative analysis of Th1, Th2 and TGF-&bgr;1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. Int J Cancer 77:7–12

    Article  PubMed  CAS  Google Scholar 

  7. Huang M, Wang J, Lee P, Sharma S, Mao JT, Meissner H, Uyemura K, Modlin R, Wollman J, Dubinett SM (1995) Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res 55:3847–3853

    PubMed  CAS  Google Scholar 

  8. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  9. Batra RK, Lin Y, Sharma S, Dohadwala M, Luo J, Pold M, Dubinett SM (2003) Non-small cell lung cancer-derived soluble mediators enhance apoptosis in activated T lymphocytes through an IκB kinase-dependent mechanism. Cancer Res 63:642–646

    PubMed  CAS  Google Scholar 

  10. Houghton AM (2010) The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle 9:1732–1737

    Article  PubMed  CAS  Google Scholar 

  11. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochimica et Biophysica Acta (BBA) Rev Cancer 1796:33–40

    Article  CAS  Google Scholar 

  12. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH (2001) Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  13. Teng MW, Ngiow SF, von Scheidt B, McLaughlin N, Sparwasser T, Smyth MJ (2010) Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 70:7800–7809

    Article  PubMed  CAS  Google Scholar 

  14. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK, Johnson JT, Gorelik E, Lang S, Whiteside TL (2010) Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem 285:27571–27580

    Article  PubMed  CAS  Google Scholar 

  15. Donnenberg VS, Luketich JD, Landreneau RJ, Popovich AM, Donnenberg AD (2004) Influx and apoptosis of activated effector memory T cells in both lungs of patients with unilateral non-small cell lung cancer (NSCLC). In: Journal of clinical oncology, 2004 ASCO annual meeting proceedings, vol 22, no. 14S (July 15 Supplement), New Orleans, LA, p 7373

  16. Perussia B, Fanning V, Trinchieri G (1983) A human NK and K cell subset shares with cytotoxic T cells expression of the antigen recognized by antibody OKT8. J Immunol 131:223–231

    PubMed  CAS  Google Scholar 

  17. Baars PA, Ribeiro Do Couto LM, Leusen JH, Hooibrink B, Kuijpers TW, Lens SM, van Lier RA (2000) Cytolytic mechanisms and expression of activation-regulating receptors on effector-type CD8+CD45RA+CD27− human T cells. J Immunol 165:1910–1917

    PubMed  CAS  Google Scholar 

  18. Baars PA, Maurice MM, Rep M, Hooibrink B, van Lier RA (1995) Heterogeneity of the circulating human CD4+ T cell population. Further evidence that the CD4+CD45RA-CD27− T cell subset contains specialized primed T cells. J Immunol 154:17–25

    PubMed  CAS  Google Scholar 

  19. Tomiyama H, Matsuda T, Takiguchi M (2002) Differentiation of human CD8+ T cells from a memory to memory/effector phenotype. J Immunol 168:5538–5550

    PubMed  CAS  Google Scholar 

  20. De Jong R, Brouwer M, Hooibrink B, van der Pouw-Kraan T, Miedema F, van Lier RAW (1992) The CD27− subset of peripheral blood memory CD4+ lymphocytes contains functionally differentiated T lymphocytes that develop by persistent antigenic stimulation in vivo. Eur J Immunol 22:993–999

    Article  PubMed  Google Scholar 

  21. Hamann DR, Baars PA, Rep MHG, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RAW (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186:1407–1418

    Article  PubMed  CAS  Google Scholar 

  22. Appay V, van Lier RA, Sallusto F, Roederer M (2008) Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytom A 73:975–983

    Article  Google Scholar 

  23. Heriberto P-G, Dolores A-C, Hector F-V, Juan Jose M, Jose Sullivan L-G (2005) Effector, memory and naive CD8+ T cells in peripheral blood and pleural effusion from lung adenocarcinoma patients. Lung Cancer (Amsterdam, Netherlands) 47:361–371

    Google Scholar 

  24. Jenkins M, Taylor P, Norton S, Urdahl K (1991) CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147:2461–2466

    PubMed  CAS  Google Scholar 

  25. Dhein J, Walczak H, Baumler C, Debatin K-M, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373:438–441

    Article  PubMed  CAS  Google Scholar 

  26. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  27. Mehta K, Shahid U, Malavasi F (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J 10:1408–1417

    PubMed  CAS  Google Scholar 

  28. Woods ML, Shimizu Y (2001) Signaling networks regulating {beta}1 integrin-mediated adhesion of T lymphocytes to extracellular matrix. J Leukoc Biol 69:874–880

    PubMed  CAS  Google Scholar 

  29. Watt SM, Gschmeissner SE, Bates PA (1995) PECAM-1: its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk Lymphoma 17:229–244

    Article  PubMed  CAS  Google Scholar 

  30. Agace WW, Higgins JM, Sadasivan B, Brenner MB, Parker CM (2000) T-lymphocyte-epithelial-cell interactions: integrin alpha(E)(CD103)beta(7), LEEP-CAM and chemokines. Curr Opin Cell Biol 12:563–568

    Article  PubMed  CAS  Google Scholar 

  31. Rothlein R, Dustin M, Marlin S, Springer T (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137:1270–1274

    PubMed  CAS  Google Scholar 

  32. Mountain CF, Carr DT, Anderson WA (1974) A system for the clinical staging of lung cancer. Am J Roentgenol Radium Ther Nucl Med 120:130–138

    PubMed  CAS  Google Scholar 

  33. Rao NA (1997) Mechanisms of inflammatory response in sympathetic ophthalmia and VKH syndrome. Eye (Lond) 11(Pt 2):213–216

    Google Scholar 

  34. Kuss I, Donnenberg AD, Gooding W, Whiteside TL (2003) Effector CD8+CD45RO-CD27-T cells have signalling defects in patients with squamous cell carcinoma of the head and neck. Br J Cancer 88:223–230

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  PubMed  CAS  Google Scholar 

  36. Rallón NI, López M, Soriano V, García-Samaniego J, Romero M, Labarga P, García-Gasco P, González-Lahoz J, Benito JM (2009) Level, phenotype and activation status of CD4+FoxP3+ regulatory T cells in patients chronically infected with human immunodeficiency virus and/or hepatitis C virus. Clin Exp Immunol 155:35–43

    Article  PubMed  Google Scholar 

  37. Mandapathil M, Lang S, Gorelik E, Whiteside TL (2009) Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J Immunol Methods 346:55–63

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi K, Saito S, Kamamura Y, Katakawa M, Monden Y (2001) Prognostic value of CD4+ lymphocytes in pleural cavity of patients with non-small cell lung cancer. Thorax 56:639–642

    Article  PubMed  CAS  Google Scholar 

  39. Zhuang X, Xia X, Wang C, Gao F, Shan N, Zhang L, Zhang LA. High number of CD8+ T cells infiltrated in NSCLC Tissues is associated with a favorable prognosis. Appl Immunohistochem Mol Morphol 18:24–28

  40. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, Itoh T, Ohbuchi T, Kondo S, Katoh H (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280

    Article  PubMed  CAS  Google Scholar 

  41. Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund L-T (2008) Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14:5220–5227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Theresa Whiteside and Jill Siegfried for their careful reading and critique of this manuscript. This work was supported by the Heart Lung and Esophageal Institute of the University of Pittsburgh Medical Center, and the University of Pittsburgh Lung Cancer SPORE: NCI P50-CA90440.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. D. Donnenberg or V. S. Donnenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zikos, T.A., Donnenberg, A.D., Landreneau, R.J. et al. Lung T-cell subset composition at the time of surgical resection is a prognostic indicator in non-small cell lung cancer. Cancer Immunol Immunother 60, 819–827 (2011). https://doi.org/10.1007/s00262-011-0996-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-0996-4

Keywords

Navigation