Skip to main content
Log in

Mechanism of synergistic effect of chemotherapy and immunotherapy of cancer

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

In recent years, the combination of cancer immunotherapy with standard therapeutic modality is gaining credibility due to a number of clinical trials demonstrating therapeutic success of such combination therapies. However, the mechanism of this phenomenon is poorly understood. Here, we will discuss recent findings that suggest novel mechanisms of synergistic effect of cancer immunotherapy and chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  CAS  PubMed  Google Scholar 

  2. Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K, Nealon P, Matulonis U, Campos S, Gilligan TD et al (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 11(12):4430–4436

    Article  CAS  PubMed  Google Scholar 

  3. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, Bepler G, Simon G, Janssen W, Lee JH et al (2006) Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12(3 Pt 1):878–887

    Article  CAS  PubMed  Google Scholar 

  4. Arlen PM, Gulley JL, Parker C, Skarupa L, Pazdur M, Panicali D, Beetham P, Tsang KY, Grosenbach DW, Feldman J et al (2006) A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 12(4):1260–1269

    Article  CAS  PubMed  Google Scholar 

  5. Schlom J, Arlen PM, Gulley JL (2007) Cancer vaccines: moving beyond current paradigms. Clin Cancer Res 13(13):3776–3782

    Article  CAS  PubMed  Google Scholar 

  6. Wheeler CJ, Das A, Liu G, Yu JS, Black KL (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10(16):5316–5326

    Article  CAS  PubMed  Google Scholar 

  7. Behl D, Porrata LF, Markovic SN, Letendre L, Pruthi RK, Hook CC, Tefferi A, Elliot MA, Kaufmann SH, Mesa RA et al (2006) Absolute lymphocyte count recovery after induction chemotherapy predicts superior survival in acute myelogenous leukemia. Leukemia 20(1):29–34

    Article  CAS  PubMed  Google Scholar 

  8. Liseth K, Ersvaer E, Hervig T, Bruserud O (2010) Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010:692097

    PubMed  Google Scholar 

  9. Shurin GV, Tourkova IL, Kaneno R, Shurin MR (2009) Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism. J Immunol 183(1):137–144

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka H, Matsushima H, Nishibu A, Clausen BE, Takashima A (2009) Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation. Cancer Res 69(17):6987–6994

    Article  CAS  PubMed  Google Scholar 

  11. Green DR, Ferguson T, Zitvogel L, Kroemer G (2009) Immunogenic and tolerogenic cell death. Nat Rev Immunol 9(5):353–363

    Article  CAS  PubMed  Google Scholar 

  12. Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109(11):4839–4845

    Article  CAS  PubMed  Google Scholar 

  13. Jensen H, Andresen L, Hansen KA, Skov S (2009) Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity. J Leukoc Biol 86(4):923–932

    Article  CAS  PubMed  Google Scholar 

  14. Bergmann-Leitner ES, Abrams SI (2001) Treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes. Cancer Immunol Immunother 50(9):445–455

    Article  CAS  PubMed  Google Scholar 

  15. Herber DL, Nagaraj S, Djeu JY, Gabrilovich DI (2007) Mechanism and therapeutic reversal of immune suppression in cancer. Cancer Res 67(11):5067–5069

    Article  CAS  PubMed  Google Scholar 

  16. Emens LA, Jaffee EM (2005) Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res 65(18):8059–8064

    Article  CAS  PubMed  Google Scholar 

  17. Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, Goemann M, Coleman J, Grochow L, Donehower RC et al (2001) Novel allogeneic granulocyte-macrophage colony-stimulating factor–secreting tumor vaccine for pancreatic cancer: a phase i trial of safety and immune activation. J Clin Oncol 19:145–156

    CAS  PubMed  Google Scholar 

  18. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120(4):1111–1124

    Article  CAS  PubMed  Google Scholar 

  19. Chada S, Mhashilkar A, Roth JA, Gabrilovich D (2003) Development of vaccines against self-antigens: the p53 paradigm. Curr Opin Drug Discov Devel 6(2):169–173

    CAS  PubMed  Google Scholar 

  20. Stark A, Hulka BS, Joens S, Novotny D, Thor AD, Wold LE, Schell MJ, Melton LJ 3rd, Liu ET, Conway K (2000) HER-2/neu amplification in benign breast disease and the risk of subsequent breast cancer. J Clin Oncol 18(2):267–274

    CAS  PubMed  Google Scholar 

  21. Allred DC, Clark GM, Molina R, Tandon AK, Schnitt SJ, Gilchrist KW, Osborne CK, Tormey DC, McGuire WL (1992) Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Hum Pathol 23(9):974–979

    Article  CAS  PubMed  Google Scholar 

  22. Horwitz SB (1994) Taxol (paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3–S6

    PubMed  Google Scholar 

  23. Sartiano GP, Lynch WE, Bullington WD (1979) Mechanism of action of the anthracycline anti-tumor antibiotics, doxorubicin, daunomycin and rubidazone: preferential inhibition of DNA polymerase alpha. J Antibiot (Tokyo) 32(10):1038–1045

    CAS  Google Scholar 

  24. Reedijk J, Lohman PH (1985) Cisplatin: synthesis, antitumour activity and mechanism of action. Pharm Weekbl Sci 7(5):173–180

    CAS  PubMed  Google Scholar 

  25. Lowin B, Hahne M, Mattmann C, Tschopp J (1994) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370(6491):650–652

    Article  CAS  PubMed  Google Scholar 

  26. Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76(6):977–987

    Article  CAS  PubMed  Google Scholar 

  27. Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  PubMed  Google Scholar 

  28. Xu X, Fu XY, Plate J, Chong AS (1998) IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 58(13):2832–2837

    CAS  PubMed  Google Scholar 

  29. Ossina NK, Cannas A, Powers VC, Fitzpatrick PA, Knight JD, Gilbert JR, Shekhtman EM, Tomei LD, Umansky SR, Kiefer MC (1997) Interferon-gamma modulates a p53-independent apoptotic pathway and apoptosis-related gene expression. J Biol Chem 272(26):16351–16357

    Article  CAS  PubMed  Google Scholar 

  30. Henkart PA, Sitkovsky MV (1994) Cytotoxic lymphocytes. Two ways to kill target cells. Curr Biol 4(10):923–925

    Article  CAS  PubMed  Google Scholar 

  31. Raja SM, Wang B, Dantuluri M, Desai UR, Demeler B, Spiegel K, Metkar SS, Froelich CJ (2002) Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J Biol Chem 277(51):49523–49530

    Article  CAS  PubMed  Google Scholar 

  32. Trapani JA, Davis J, Sutton VR, Smyth MJ (2000) Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol 12(3):323–329

    Article  CAS  PubMed  Google Scholar 

  33. Heibein JA, Goping IS, Barry M, Pinkoski MJ, Shore GC, Green DR, Bleackley RC (2000) Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med 192(10):1391–1402

    Article  CAS  PubMed  Google Scholar 

  34. Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, Sedelies K, Browne KA, Trapani JA (2000) Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med 192(10):1403–1414

    Article  CAS  PubMed  Google Scholar 

  35. Thomas DA, Scorrano L, Putcha GV, Korsmeyer SJ, Ley TJ (2001) Granzyme B can cause mitochondrial depolarization and cell death in the absence of BID, BAX, and BAK. Proc Natl Acad Sci USA 98(26):14985–14990

    Article  CAS  PubMed  Google Scholar 

  36. Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH (1997) Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med 185(5):855–866

    Article  CAS  PubMed  Google Scholar 

  37. Pinkoski MJ, Hobman M, Heibein JA, Tomaselli K, Li F, Seth P, Froelich CJ, Bleackley RC (1998) Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis. Blood 92(3):1044–1054

    CAS  PubMed  Google Scholar 

  38. Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271(46):29073–29079

    Article  CAS  PubMed  Google Scholar 

  39. Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF et al (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103(3):491–500

    Article  CAS  PubMed  Google Scholar 

  40. Stein M, Braulke T, Krentler C, Hasilik A, von Figura K (1987) 46-kDa mannose 6-phosphate-specific receptor: biosynthesis, processing, subcellular location and topology. Biol Chem Hoppe Seyler 368(8):937–947

    CAS  PubMed  Google Scholar 

  41. Stein M, Zijderhand-Bleekemolen JE, Geuze H, Hasilik A, von Figura K (1987) Mr 46, 000 mannose 6-phosphate specific receptor: its role in targeting of lysosomal enzymes. EMBO J 6(9):2677–2681

    CAS  PubMed  Google Scholar 

  42. Griffiths G, Hoflack B, Simons K, Mellman I, Kornfeld S (1988) The mannose 6-phosphate receptor and the biogenesis of lysosomes. Cell 52(3):329–341

    Article  CAS  PubMed  Google Scholar 

  43. O’Gorman DB, Weiss J, Hettiaratchi A, Firth SM, Scott CD (2002) Insulin-like growth factor-II/mannose 6-phosphate receptor overexpression reduces growth of choriocarcinoma cells in vitro and in vivo. Endocrinology 143(11):4287–4294

    Article  PubMed  Google Scholar 

  44. Zaina S, Squire S (1998) The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces organ size by IGF-II-mediated and IGF-II-independent mechanisms. J Biol Chem 273(44):28610–28616

    Article  CAS  PubMed  Google Scholar 

  45. Li J, Sahagian GG (2004) Demonstration of tumor suppression by mannose 6-phosphate/insulin-like growth factor 2 receptor. Oncogene 23(58):9359–9368

    Article  CAS  PubMed  Google Scholar 

  46. Dressel R, Raja SM, Honing S, Seidler T, Froelich CJ, von Figura K, Gunther E (2004) Granzyme-mediated cytotoxicity does not involve the mannose 6-phosphate receptors on target cells. J Biol Chem 279(19):20200–20210

    Article  CAS  PubMed  Google Scholar 

  47. Trapani JA, Sutton VR, Thia KY, Li YQ, Froelich CJ, Jans DA, Sandrin MS, Browne KA (2003) A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J Cell Biol 160(2):223–233

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Gabrilovich.

Additional information

This paper is a Focussed Research Review based on a presentation given at the Eighth Annual Meeting of the Association for Cancer Immunotherapy (CIMT), held in Mainz, Germany, 26–28th May, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, R., Gabrilovich, D.I. Mechanism of synergistic effect of chemotherapy and immunotherapy of cancer. Cancer Immunol Immunother 60, 419–423 (2011). https://doi.org/10.1007/s00262-010-0930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0930-1

Keywords

Navigation