Skip to main content

Advertisement

Log in

DNA vaccination strategies for anti-tumour effective gene therapy protocols

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

After more than 15 years of experimentation, DNA vaccines have become a promising perspective for tumour diseases, and animal models are widely used to study the biological features of human cancer progression and to test the efficacy of vaccination protocols. In recent years, immunisation with naked plasmid DNA encoding tumour-associated antigens or tumour-specific antigens has revealed a number of advantages: antigen-specific DNA vaccination stimulates both cellular and humoral immune responses; multiple or multi-gene vectors encoding several antigens/determinants and immune-modulatory molecules can be delivered as single administration; DNA vaccination does not induce autoimmune disease in normal animals; DNA vaccines based on plasmid vectors can be produced and tested rapidly and economically. However, DNA vaccines have shown low immunogenicity when tested in human clinical trials, and compared with traditional vaccines, they induce weak immune responses. Therefore, the improvement of vaccine efficacy has become a critical goal in the development of effective DNA vaccination protocols for anti-tumour therapy. Several strategies are taken into account for improving the DNA vaccination efficacy, such as antigen optimisation, use of adjuvants and delivery systems like electroporation, co-expression of cytokines and co-stimulatory molecules in the same vector, different vaccination protocols. In this review we discuss how the combination of these approaches may contribute to the development of more effective DNA vaccination protocols for the therapy of lymphoma in a mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baraldo K, Mori E, Bartoloni A et al (2004) N19 polyepitope as a carrier for enhanced immunogenicity and protective efficacy of meningococcal conjugate vaccines. Infect Immun 72:4884–4887

    Article  CAS  PubMed  Google Scholar 

  2. Baxevanis CN, Perez SA, Papamichail M (2009) Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 58:317–324

    Article  PubMed  Google Scholar 

  3. Benvenuti F, Cesco-Gaspere M, Burrone OR (2002) Anti-idiotypic DNA vaccines for B-cell lymphoma therapy. Front Biosci 7:228–234

    Article  Google Scholar 

  4. Bodles-Brakhop AM, Draghia-Akli R (2008) DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 7:1085–1101

    Article  CAS  PubMed  Google Scholar 

  5. Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J (2005) Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J Immunol 174:6292–6298

    CAS  PubMed  Google Scholar 

  6. Campbell MJ, Carroll W, Kon S et al (1987) Idiotype vaccination against murine B cell lymphoma. Humoral and cellular responses elicited by tumor-derived immunoglobulin M and its molecular subunits. J Immunol 139:2825–2833

    CAS  PubMed  Google Scholar 

  7. Campbell MJ, Esserman L, Levy R (1988) Immunotherapy of established murine B cell lymphoma. Combination of idiotype immunization and cyclophosphamide. J Immunol 141:3227–3233

    CAS  PubMed  Google Scholar 

  8. Cheever MA, Allison JP, Ferris AS et al (2009) The prioritization of cancer antigen: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 15:5323–5337

    Article  PubMed  Google Scholar 

  9. Chiarella P, Massi E, De Robertis M, Fazio VM, Signori E (2008) Strategies for effective naked-DNA vaccination against infectious diseases. Recent Pat Antiinfect Drug Discov 3:93–101

    Article  CAS  PubMed  Google Scholar 

  10. Chiarella P, Massi E, De Robertis M, Fazio VM, Signori E (2009) Recent Advances in Epitope Design for Immunotherapy of Cancer. Recent Pat Anticancer Drug Discov 4:227–240

    Article  CAS  PubMed  Google Scholar 

  11. Chiarella P, Massi E, De Robertis M, Sibilio A, Parrella P, Fazio VM (2008) Electroporation of skeletal muscle induces danger signal release and antigen-presenting cell recruitment independently of DNA vaccine administration. Expert Opin Biol Ther 8:1645–1657

    Article  CAS  PubMed  Google Scholar 

  12. Chiarella P, Massi E, De Robertis M, Signori E, Fazio VM (2007) Adjuvants in vaccines and for immunisation: current trends. Expert Opin Biol Ther 7:1551–1562

    Article  CAS  PubMed  Google Scholar 

  13. Davtyan H, Mkrtichyan M, Movsesyan N et al (2010) DNA prime-protein boost increased the titer, avidity and persistence of anti-Abeta antibodies in wild-type mice. Gene Ther 17:261–271

    Article  CAS  PubMed  Google Scholar 

  14. Demotz S, Barbey C, Corradin G, Amoroso A, Lanzavecchia A (1993) The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86. Eur J Immunol 23:425–432

    Article  CAS  PubMed  Google Scholar 

  15. Fioretti D, Iurescia S, Fazio VM, Rinaldi M (2010) DNA vaccines: developing new strategies against cancer. J Biomed Biotech (in press)

  16. Fong CL, Mok CL, Hui KM (2006) Intramuscular immunization with plasmid coexpressing tumour antigen and Flt-3L results in potent tumour regression. Gene Ther 13:245–256

    Article  CAS  PubMed  Google Scholar 

  17. Fredriksen AB, Sandlie I, Bogen B (2006) DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells. Mol Ther 13:776–785

    Article  CAS  PubMed  Google Scholar 

  18. Gollob JA, Mier JW, Veenstra K (2000) Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-γ induction is associated with clinical response. Clin Cancer Res 6:1678–1694

    CAS  PubMed  Google Scholar 

  19. Grujic M, Holst PJ, Christensen JP, Thomsen AR (2009) Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice. J Gen Virol 90:414–422

    Article  CAS  PubMed  Google Scholar 

  20. Hansson L, Rabbani H, Fagerberg J, Osterborg A, Mellstedt H (2003) T-cell epitopes within the complementarity-determining and framework regions of the tumor-derived immunoglobulin heavy chain in multiple myeloma. Blood 101:4930–4936

    Article  CAS  PubMed  Google Scholar 

  21. Ho PC, Mutch DA, Winkel KD et al (1990) Identification of two promiscuous T cell epitopes from tetanus toxin. Eur J Immunol 20:477–483

    Article  CAS  PubMed  Google Scholar 

  22. Hurvitz SA, Timmerman JM (2005) Current status of therapeutic vaccines for non-Hodgkin’s lymphoma. Curr Opin Oncol 17:432–440

    Article  CAS  PubMed  Google Scholar 

  23. Iurescia S, Fioretti D, Pierimarchi P et al (2010) Genetic Immunization with CDR3-Based Fusion Vaccine Confers Protection and Long Term Tumor-Free Survival in a Mouse Model of Lymphoma. J Biomed Biotech (in press)

  24. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721–728

    Article  CAS  PubMed  Google Scholar 

  25. Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    Article  CAS  PubMed  Google Scholar 

  26. Kwak LW, Campbell MJ, Czerwinski DK, Hart S, Miller RA, Levy R (1992) Induction of immune responses in patients with B-cell lymphoma against the surface-immunoglobulin idiotype expressed by their tumors. N Engl J Med 327:1209–1215

    Article  CAS  PubMed  Google Scholar 

  27. Kwissa M, Kasturi SP, Pulendran B (2007) The Science of adjuvants. Expert Rev Vaccines 6:673–684

    Article  CAS  PubMed  Google Scholar 

  28. Liso A, Benedetti R, Fagioli M, Mariano A, Falini B (2005) Modulatory effects of mycobacterial heat-shock protein 70 in DNA vaccination against lymphoma. Haematologica 90:60–65

    CAS  PubMed  Google Scholar 

  29. Livingston B, Crimi C, Newman M et al (2002) A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 168:5499–5506

    CAS  PubMed  Google Scholar 

  30. Livingston BD, Newman M, Crimi C, McKinney D, Chesnut R, Sette A (2001) Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines. Vaccine 19:4652–4660

    Article  CAS  PubMed  Google Scholar 

  31. Lu Y, Ouyang K, Fang J et al (2009) Improved efficacy of DNA vaccination against prostate carcinoma by boosting with recombinant protein vaccine and by introduction of a novel adjuvant epitope. Vaccine 27:5411–5418

    Article  CAS  PubMed  Google Scholar 

  32. Luo D, Saltzman WM (2000) Synthetic DNA delivery systems. Nat Biotechnol 18:33–37 (Review)

    Article  CAS  PubMed  Google Scholar 

  33. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC (1997) Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 3:625–631

    Article  CAS  PubMed  Google Scholar 

  34. Montgomery DL, Donnelly JJ, Shiver JW, Liu MA, Ulmer JB (1994) Protein expression in vivo by injection of polynucleotides. Curr Opin Biotechnol 5:505–510

    Article  CAS  PubMed  Google Scholar 

  35. O’Hagan DT, Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2:727–735 (Review)

    Article  PubMed  CAS  Google Scholar 

  36. Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ (2008) Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet Vaccines Ther 6:13

    Article  PubMed  CAS  Google Scholar 

  37. Panina-Bordignon P, Tan A, Termijtelen A, Demotz S, Corradin G, Lanzavecchia A (1989) Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 19:2237–2242

    Article  CAS  PubMed  Google Scholar 

  38. Perales MA, Yuan J, Powel S et al (2008) Phase I/II study of GMCSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol Ther 16:2022–2029

    Article  CAS  PubMed  Google Scholar 

  39. Rice J, Buchan S, Stevenson FK (2002) Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen. J Immunol 169:3908–3913

    CAS  PubMed  Google Scholar 

  40. Rice J, Elliott T, Buchan S, Stevenson FK (2001) DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J Immunol 167:1558–1565

    CAS  PubMed  Google Scholar 

  41. Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120

    Article  CAS  PubMed  Google Scholar 

  42. Rinaldi M, Fioretti D, Iurescia S, Signori E et al (2008) Anti-tumor immunity induced by CDR3-based DNA vaccination in a murine B-cell lymphoma model. Biochem Biophys Res Commun 370:279–284

    Article  CAS  PubMed  Google Scholar 

  43. Rinaldi M, Ria F, Parrella P, Signori E et al (2001) Antibodies elicited by naked DNA vaccination against the complementary-determining region 3 hypervariable region of immunoglobulin heavy chain idiotypic determinants of B lymphoproliferative disorders specifically react with patients’ tumor cells. Cancer Res 61:1555–1562

    CAS  PubMed  Google Scholar 

  44. Sette A, Newman M, Livingston B et al (2002) Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. Tissue Antigens 59:443–451 Review

    Article  CAS  PubMed  Google Scholar 

  45. Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D (2004) DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 199:156–180

    Article  CAS  PubMed  Google Scholar 

  46. Sumida SM, McKay PF, Truitt DM et al (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114:1334–1342

    CAS  PubMed  Google Scholar 

  47. Velders MP, Weijzen S, Eiben GL et al (2001) Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J Immunol 166:5366–5373

    CAS  PubMed  Google Scholar 

  48. Wang QM, Sun SH, Hu ZL et al (2004) Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine. Scand J Immunol 60:219–225

    Article  CAS  PubMed  Google Scholar 

  49. Xu W, Chu Y, Zhang R, Xu H, Wang Y, Xiong S (2005) Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine. Virology 334:255–263

    Article  CAS  PubMed  Google Scholar 

  50. Zeng G (2001) MHC class II-restricted tumor antigens recognized by CD4+ T cells: new strategies for cancer vaccine design. J Immunother 24:195–204

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E. Signori thanks “Energy for Research”, sponsor group of the Laboratory of Molecular Pathology and Experimental Oncology at CNR-INMM.This work was partly supported by Bio-Ker Srl and by MiUR, FIRB-Idee Progettuali RBIP0695BB_001. E. Massi is recipient of a post-doctoral fellowship from University Campus Bio-Medico of Rome, Centre of Integrated Research. S. Iurescia and D. Fioretti have been supported by MiUR grant FIRB 2006––Idee Progettuali (RBIP0695BB) and by Bio-Ker S.r.l.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emanuela Signori or Vito Michele Fazio.

Additional information

S. Iurescia, E. Massi, D. Fioretti, P. Chiarella and M. De Robertis are joint second authors and have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Signori, E., Iurescia, S., Massi, E. et al. DNA vaccination strategies for anti-tumour effective gene therapy protocols. Cancer Immunol Immunother 59, 1583–1591 (2010). https://doi.org/10.1007/s00262-010-0853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0853-x

Keywords

Navigation