Skip to main content

Advertisement

Log in

Local delivery of recombinant vaccinia virus encoding for neu counteracts growth of mammary tumors more efficiently than systemic delivery in neu transgenic mice

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Recombinant vaccinia virus has been widely employed as a cancer vaccine in several clinical trials. In this study we explored, employing BALB/c mice transgenic for the rat neu oncogene, the ability of the recombinant vaccinia virus neu (rV-neuT) vaccine to inhibit growth of neu+ mammary carcinomas and whether the efficacy of vaccination was dependent on: (a) carcinogenesis stage at which the vaccination was initiated; (b) number of vaccinations and (c) route of delivery (systemic vs. local). BALB-neuT mice were vaccinated one, two and three times by subcutaneous (s.c.) and intramammary gland (im.g.) injection with rV-neuT or V-wt (wild-type vaccinia virus) starting at the stage in which mouse mammary gland displays atypical hyperplasia, carcinoma in situ or invasive carcinoma. We demonstrated that vaccination using rV-neuT was more effective when started at an earlier stage of mammary carcinogenesis and after three vaccinations. The im.g. vaccination was more effective than the s.c. vaccination in inhibiting mammary carcinogenesis, eliciting anti-Neu antibodies, increasing anti-Neu IgG2a/G3 isotypes and inducing antibodies able to trigger mammary tumor cells apoptosis and antibody-dependent cellular cytotoxicity. The better protective ability of rV-neuT im.g. vaccination was associated with its capacity to induce a superior degree of in vivo mammary cancer cells apoptosis. Our research suggests that intratumoral vaccination using recombinant vaccinia virus could be employed to increase the activity of a genetic cancer vaccine. This study may have important implications for the design of cancer vaccine protocols for the treatment of breast cancer and of accessible tumors using recombinant vaccinia virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jacobs BL, Langland JO, Kibler KV et al (2009) Vaccinia virus vaccines: past, present and future. Antiviral Res 84:1–13

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy RB, Ovsyannikova IG, Jacobson RM, Poland GA (2009) The immunology of smallpox vaccines. Curr Opin Immunol 21:314–320

    Article  CAS  PubMed  Google Scholar 

  3. Essajee S, Kaufman HL (2004) Poxvirus vaccines for cancer and HIV therapy. Expert Opin Biol Ther 4:575–588

    Article  CAS  PubMed  Google Scholar 

  4. Kaufman HL (2003) The role of poxviruses in tumor immunotherapy. Surgery 134:731–737

    Article  PubMed  Google Scholar 

  5. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93:11341–11348

    Article  CAS  PubMed  Google Scholar 

  6. Lechleider RJ, Arlen PM, Tsang KY et al (2008) Safety and immunologic response of a viral vaccine to prostate-specific antigen in combination with radiation therapy when metronomic-dose interleukin 2 is used as an adjuvant. Clin Cancer Res 14:5284–5291

    Article  CAS  PubMed  Google Scholar 

  7. Kaufman HL, Kim-Schulze S, Manson K et al (2007) Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J Transl Med 26(5):60

    Article  Google Scholar 

  8. Gulley J, Chen AP, Dahut W et al (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53:109–117

    Article  CAS  PubMed  Google Scholar 

  9. Marshall JL, Hoyer RJ, Toomey MA et al (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18:3964–3973

    CAS  PubMed  Google Scholar 

  10. Scholl SM, Balloul JM, Le Goc G et al (2000) Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother 23:570–580

    Article  CAS  PubMed  Google Scholar 

  11. Mastrangelo MJ, Maguire HC, Lattime EC (2000) Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma. Adv Exp Med Biol 465:391–400

    Article  CAS  PubMed  Google Scholar 

  12. Conry RM, Allen KO, Lee S et al (2000) Human autoantibodies to carcinoembryonic antigen (CEA) induced by a vaccinia-CEA vaccine. Clin Cancer Res 6:34–41

    CAS  PubMed  Google Scholar 

  13. Conry RM, Khazaeli MB, Saleh MN et al (1999) Phase I trial of a recombinant vaccinia virus encoding carcinoembryonic antigen in metastatic adenocarcinoma: comparison of intradermal versus subcutaneous administration. Clin Cancer Res 5:2330–2337

    CAS  PubMed  Google Scholar 

  14. Wallack MK, Sivanandham M, Balch CM et al (1998) Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 187:69–77

    Article  CAS  PubMed  Google Scholar 

  15. Kim-Schulze S, Kim HS, Wainstein A et al (2008) Intrarectal vaccination with recombinant vaccinia virus expressing carcinoembronic antigen induces mucosal and systemic immunity and prevents progression of colorectal cancer. J Immunol 181:8112–8119

    CAS  PubMed  Google Scholar 

  16. Kaufman HL, Cohen S, Cheung K et al (2006) Local delivery of vaccinia virus expressing multiple costimulatory molecules for the treatment of established tumors. Hum Gene Ther 17:239–244

    Article  CAS  PubMed  Google Scholar 

  17. Hörig H, Kaufman HL (2003) Local delivery of poxvirus vaccines for melanoma. Semin Cancer Biol 13:417–422

    Article  PubMed  Google Scholar 

  18. Kaufman HL, DeRaffele G, Divito J et al (2001) A phase I trial of intralesional rV-Tricom vaccine in the treatment of malignant melanoma. Hum Gene Ther 12:1459–1480

    Article  CAS  PubMed  Google Scholar 

  19. Gomella LG, Mastrangelo MJ, McCue PA, Maguire HC Jr, Mulholland SG, Lattime EC (2001) Phase I study of intravescical vaccinia virus as a vector for gene therapy of bladder cancer. J Urol 166:1291–1295

    Article  CAS  PubMed  Google Scholar 

  20. Kudo-Saito C, Schlom J, Hodge JW (2005) Induction of an antigen cascade by diversified subcutaneous/intratumoral vaccination is associated with antitumor responses. Clin Cancer Res 11:2416–2426

    Article  CAS  PubMed  Google Scholar 

  21. Kudo-Saito C, Schlom J, Hodge JW (2004) Intratumoral vaccination and diversified subcutaneous/intratumoral vaccination with recombinant poxviruses encoding a tumor antigen and multiple costimulatory molecules. Clin Cancer Res 10:1090–1099

    Article  CAS  PubMed  Google Scholar 

  22. Crittenden MR, Thanarajasingam U, Vile RG, Gough MJ (2005) Intratumoral immunotherapy: using the tumour against itself. Immunology 114:11–22

    Article  CAS  PubMed  Google Scholar 

  23. Kaufman HL, Kim DW, Deraffele G, Mitcham J, Coffin RS, Kim-Schulze S (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17:718–730

    Article  PubMed  Google Scholar 

  24. Yang AS, Monken CE, Lattime EC (2003) Intratumoral vaccination with vaccinia-expressed tumor antigen and granulocyte macrophage colony-stimulating factor overcomes immunological ignorance to tumor antigen. Cancer Res 63:6956–6961

    CAS  PubMed  Google Scholar 

  25. Wright P, Zheng C, Moyana T, Xiang J (1998) Intratumoral vaccination of adenoviruses expressing fusion protein RM4/tumor necrosis factor (TNF)-alpha induces significant tumor regression. Cancer Gene Ther 5:371–379

    CAS  PubMed  Google Scholar 

  26. Boggio K, Nicoletti G, Di Carlo E et al (1998) Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. J Exp Med 188:589–596

    Article  CAS  PubMed  Google Scholar 

  27. Rovero S, Amici A, Di Carlo E et al (2000) DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165:5133–5142

    CAS  PubMed  Google Scholar 

  28. Cavallo F, Offringa R, van der Burg SH, Forni G, Melief CJ (2006) Vaccination for treatment and prevention of cancer in animal models. Adv Immunol 90:175–213

    Article  CAS  PubMed  Google Scholar 

  29. Allen SD, Garrett JT, Rawale SV et al (2007) Peptide vaccines of the HER-2/neu dimerization loop are effective in inhibiting mammary tumor growth in vivo. J Immunol 179:472–482

    CAS  PubMed  Google Scholar 

  30. Gallo P, Dharmapuri S, Nuzzo M et al (2007) Adenovirus vaccination against neu oncogene exerts long-term protection from tumorigenesis in BALB/neuT transgenic mice. Int J Cancer 120:574–584

    Article  CAS  PubMed  Google Scholar 

  31. Park JM, Terabe M, Steel JC et al (2008) Therapy of advanced established murine breast cancer with a recombinant adenoviral ErbB-2/neu vaccine. Cancer Res 68:1979–1987

    Article  CAS  PubMed  Google Scholar 

  32. Nanni P, Landuzzi L, Nicoletti G et al (2004) Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent. J Immunol 173:2288–2296

    CAS  PubMed  Google Scholar 

  33. Masuelli L, Focaccetti C, Cereda V et al (2007) Gene-specific inhibition of breast carcinoma in BALB-neuT mice by active immunization with rat Neu or human ErbB receptors. Int J Oncol 30:381–392

    CAS  PubMed  Google Scholar 

  34. Bargmann CI, Hung MC, Weinberg RA (1986) The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319:226–230

    Article  CAS  PubMed  Google Scholar 

  35. Di Marco E, Pierce JH, Knicley CL, Di Fiore PP (1990) Transformation of NIH 3T3 cells by overexpression of the normal coding sequence of the rat neu gene. Mol Cell Biol 10:3247–3252

    PubMed  Google Scholar 

  36. Bei R, Budillon A, Masuelli L et al (2004) Frequent overexpression of multiple ErbB receptors by head and neck squamous cell carcinoma contrasts with rare antibody immunity in patients. J Pathol 204:317–325

    Article  CAS  PubMed  Google Scholar 

  37. Bei R, Kantor J, Kashmiri SV, Abrams S, Schlom J (1994) Enhanced immune responses and anti-tumor activity by baculovirus recombinant carcinoembryonic antigen (CEA) in mice primed with the recombinant vaccinia CEA. J Immunother Emphasis Tumor Immunol 16:275–282

    CAS  PubMed  Google Scholar 

  38. Bei R, Guptill V, Masuelli L et al (1998) The use of a cationic liposome formulation (DOTAP) mixed with a recombinant tumor-associated antigen to induce immune responses and protective immunity in mice. J Immunother 21:159–169

    Article  CAS  PubMed  Google Scholar 

  39. Gown AM, Willingham MC (2002) Improved detection of apoptotic cells in archival paraffin sections: immunohistochemistry using antibodies to cleaved caspase 3. J Histochem Cytochem 50:449–454

    CAS  PubMed  Google Scholar 

  40. Masuelli L, Trono P, Marzocchella L et al (2008) Intercalated disk remodeling in delta-sarcoglycan-deficient hamsters fed with an alpha-linolenic acid-enriched diet. Int J Mol Med 21:41–48

    CAS  PubMed  Google Scholar 

  41. Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20:719–726

    Article  CAS  PubMed  Google Scholar 

  42. Nahta R, Esteva FJ (2006) Herceptin: mechanisms of action and resistance. Cancer Lett 232:123–138

    Article  CAS  PubMed  Google Scholar 

  43. Disis ML, Wallace DR, Gooley TA et al (2009) Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 27:4685–4692

    Article  CAS  PubMed  Google Scholar 

  44. Disis ML, Schiffman K (2001) Cancer vaccines targeting the HER2/neu oncogenic protein. Semin Oncol 28(6 Suppl 18):12–20

    Article  CAS  PubMed  Google Scholar 

  45. Denkers EY, Badger CC, Ledbetter JA, Bernstein ID (1985) Influence of antibody isotype on passive serotherapy of lymphoma. J Immunol 135:2183–2186

    CAS  PubMed  Google Scholar 

  46. Nanni P, Nicoletti G, De Giovanni C et al (2001) Combined allogeneic tumor cell vaccination and systemic interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice. J Exp Med 194:1195–1205

    Article  CAS  PubMed  Google Scholar 

  47. Rolla S, Nicolo C, Malinarich S, Orsini M et al (2006) Distinct and non-overlapping T cell receptor repertoires expanded by DNA vaccination in wild-type and HER-2 transgenic BALB/c mice. J Immunol 177:7626–7633

    CAS  PubMed  Google Scholar 

  48. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  CAS  PubMed  Google Scholar 

  49. Bei R, Masuelli L, Palumbo C et al (2009) A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: inflammation in their induction and impact on tumor growth. Cancer Lett 281:8–23

    Article  CAS  PubMed  Google Scholar 

  50. Aurisicchio L, Peruzzi D, Conforti A et al (2009) Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9. Clin Cancer Res 15:1575–1584

    Article  CAS  PubMed  Google Scholar 

  51. Mastini C, Becker PD, Iezzi M et al (2008) Intramammary application of non-methylated-CpG oligodeoxynucleotides (CpG) inhibits both local and systemic mammary carcinogenesis in female BALB/c Her-2/neu transgenic mice. Curr Cancer Drug Targets 8:230–242

    Article  CAS  PubMed  Google Scholar 

  52. Betting DJ, Yamada RE, Kafi K et al (2009) Intratumoral but not systemic delivery of CpG oligodeoxynucleotide augments the efficacy of anti-CD20 monoclonal antibody therapy against B cell lymphoma. J Immunother 32:622–631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from PRIN and AIRC. We wish to thank Therion Biologics (Cambridge, MA) and Dr. G. Mazzara, which kindly provided vaccinia viruses, IRBM P. Angeletti (Pomezia, Rome) for peptides, and Dr. Eddi Di Marco (Istituto Tumori di Genova) for providing LTR-Neu cells. The authors thank Debra Weingarten for her editorial assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuelli, L., Marzocchella, L., Focaccetti, C. et al. Local delivery of recombinant vaccinia virus encoding for neu counteracts growth of mammary tumors more efficiently than systemic delivery in neu transgenic mice. Cancer Immunol Immunother 59, 1247–1258 (2010). https://doi.org/10.1007/s00262-010-0850-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0850-0

Keywords

Navigation