Skip to main content
Log in

Increase in tumor size following intratumoral injection of immunostimulatory CpG-containing oligonucleotides in a rat glioma model

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The immunosuppressive environment of malignant gliomas is likely to suppress the anti-tumor activity of infiltrating microglial cells and lymphocytes. Macrophages and microglial cells may be activated by oligonucleotides containing unmethylated CpG-motifs, although their value in cancer immunotherapy has remained controversial. Following injection of CpG-containing oligonucleotides (ODN) into normal rat brain, we observed a local inflammatory response with CD8+ T cell infiltration, upregulation of MHC 2, and ED1 expression proving the immunogenic capacity of the CpG-ODN used. This was not observed with a control ODN mutated in the immunostimulatory sequence (m-CpG). To study their effect in a syngeneic tumor model, we implanted rat 9L gliosarcoma cells into the striatum of Fisher 344 rats. After 3 days, immunostimulatory CpG-ODN, control m-CpG-ODN, or saline was injected stereotactically into the tumors (day 3 group). In another group of animals (day 0 group), CpG-ODN were mixed with 9L cells prior to implantation without further treatment on day 3. After 3 weeks, the animals were killed and the brains and spleens were removed. Rather unexpectedly, the tumors in several of the animals treated with CpG-ODN (both day 0 and day 3 group) were larger than in saline or m-CpG-ODN treated control animals. The tumor size in CpG-ODN-treated animals was more variable than in both control groups. This was associated with inflammatory responses and necrosis which was observed in most tumors following CpG treatment. This, however, did not prevent excessive growth of solid tumor masses in the CpG-treated animals similar to the control-treated animals. Dense infiltration with microglial cells resembling ramified microglia was observed within the solid tumor masses of control- and CpG-treated animals. In necrotic areas (phagocytic), activation of microglial cells was suggested by ED1 expression and a more macrophage-like morphology. Dense lymphocytic infiltrates consisting predominantly of CD8+ T cells and fewer NK cells were detected in all tumors including the control-treated animals. Expression of perforin serving as a marker for T cell or NK cell activation was detected only on isolated cells in all treatment groups. Tumors of all treatment groups revealed CD25 expression indicating T cells presumed to maintain peripheral tolerance to self-antigens. Cytotoxic T cell assays with in vitro restimulated lymphocytes (51chromium release assay) as well as interferon-gamma production by fresh splenocytes (Elispot assay) revealed specific responses to 9L cells but not another syngeneic cell line (MADB 106 adenocarcinoma). Surprisingly, the lysis rates with lymphocytes from CpG-ODN-treated animals were lower compared to control-treated animals. The tumor size of individual animals did not correlate with the response in both immune assays. Taken together, our data support the immunostimulatory capacity of CpG-ODN in normal brain. However, intratumoral application proved ineffective in a rat glioma model. CpG-ODN treatment may not yield beneficial effects in glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Auf G, Carpentier AF, Chen L, Le Clanche C, Delattre JY (2001) Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides without antigen. Clin Cancer Res 7:3540–3543

    PubMed  CAS  Google Scholar 

  2. Badie B, Bartley B, Schartner J (2002) Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas. J Neuroimmunol 133:39–45

    Article  PubMed  CAS  Google Scholar 

  3. Badie B, Schartner J, Prabakaran S, Paul J, Vorpahl J (2001) Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol 120:19–24

    Article  PubMed  CAS  Google Scholar 

  4. Barclay AN (1981) The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology 42:593–600

    PubMed  CAS  Google Scholar 

  5. Buhtoiarov IN, Sondel PM, Eickhoff JC, Rakhmilevich AL (2007) Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology 120:412–423

    Article  PubMed  CAS  Google Scholar 

  6. Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A, Martin-Duverneuil N, Sanson M, Lacomblez L, Taillibert S, Puybasset L, Van Effenterre R, Delattre JY, Carpentier AF (2006) Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol 8:60–66

    Article  PubMed  CAS  Google Scholar 

  7. Carpentier AF, Meng Y (2006) Recent advances in immunotherapy for human glioma. Curr Opin Oncol 18:631–636

    Article  PubMed  Google Scholar 

  8. Carpentier AF, Xie J, Mokhtari K, Delattre JY (2000) Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 6:2469–2473

    PubMed  CAS  Google Scholar 

  9. Damoiseaux JG, Dopp EA, Calame W, Chao D, MacPherson GG, Dijkstra CD (1994) Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology 83:140–147

    PubMed  CAS  Google Scholar 

  10. Ehtesham M, Black KL, Yu JS (2004) Recent progress in immunotherapy for malignant glioma: treatment strategies and results from clinical trials. Cancer Control 11:192–207

    PubMed  Google Scholar 

  11. El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105:430–437

    Article  PubMed  CAS  Google Scholar 

  12. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54:526–535

    Article  PubMed  Google Scholar 

  13. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE 2nd, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302

    Article  PubMed  CAS  Google Scholar 

  14. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, Cui X, Cummings TJ, Bigner DD, Gilboa E, Sampson JH (2006) Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 12:4294–4305

    Article  PubMed  CAS  Google Scholar 

  15. Ginzkey C, Eicker SO, Krause J, Brecht S, Hugo HH, Marget M, Mehdorn HM, Steinmann J, Hamel W (2009) DNA vaccination against rat gliomas expressing the E. coli lacZ gene as a model antigen (submitted)

  16. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40:252–259

    Article  PubMed  Google Scholar 

  17. Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S, Adema GJ (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181:6720–6729

    PubMed  CAS  Google Scholar 

  18. Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I, Rasmussen WL, Waldschmidt M, Sajuthi D, Purcell RH, Davis HL, Krieg AM (2000) Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 164:1617–1624

    PubMed  CAS  Google Scholar 

  19. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109:409–417

    PubMed  CAS  Google Scholar 

  20. Ilvesaro JM, Merrell MA, Swain TM, Davidson J, Zayzafoon M, Harris KW, Selander KS (2007) Toll like receptor-9 agonists stimulate prostate cancer invasion in vitro. Prostate 67:774–781

    Article  PubMed  CAS  Google Scholar 

  21. Jander S, Schroeter M, D’Urso D, Gillen C, Witte OW, Stoll G (1998) Focal ischaemia of the rat brain elicits an unusual inflammatory response: early appearance of CD8+ macrophages/microglia. Eur J Neurosci 10:680–688

    Article  PubMed  CAS  Google Scholar 

  22. Jurk M, Vollmer J (2007) Therapeutic applications of synthetic CpG oligodeoxynucleotides as TLR9 agonists for immune modulation. BioDrugs 21:387–401

    Article  PubMed  CAS  Google Scholar 

  23. Krieg AM (2007) Development of TLR9 agonists for cancer therapy. J Clin Invest 117:1184–1194

    Article  PubMed  CAS  Google Scholar 

  24. Meng Y, Carpentier AF, Chen L, Boisserie G, Simon JM, Mazeron JJ, Delattre JY (2005) Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 116:992–997

    Article  PubMed  CAS  Google Scholar 

  25. Merrell MA, Ilvesaro JM, Lehtonen N, Sorsa T, Gehrs B, Rosenthal E, Chen D, Shackley B, Harris KW, Selander KS (2006) Toll-like receptor 9 agonists promote cellular invasion by increasing matrix metalloproteinase activity. Mol Cancer Res 4:437–447

    Article  PubMed  CAS  Google Scholar 

  26. Perry VH, Gordon S (1987) Modulation of CD4 antigen on macrophages and microglia in rat brain. J Exp Med 166:1138–1143

    Article  PubMed  CAS  Google Scholar 

  27. Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, Ronaghy A, Kornbluth RS, Richman DD, Carson DA, Raz E (1997) Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 3:849–854

    Article  PubMed  CAS  Google Scholar 

  28. Schabowsky RH, Madireddi S, Sharma R, Yolcu ES, Shirwan H (2007) Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy. Curr Opin Investig Drugs 8:1002–1008

    PubMed  CAS  Google Scholar 

  29. Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B (2005) Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51:279–285

    Article  PubMed  Google Scholar 

  30. Schluesener HJ, Seid K, Deininger M, Schwab J (2001) Transient in vivo activation of rat brain macrophages/microglial cells and astrocytes by immunostimulatory multiple CpG oligonucleotides. J Neuroimmunol 113:89–94

    Article  PubMed  CAS  Google Scholar 

  31. Steinmann J, Kaden J, May G, Schroder K, Herwartz C, Muller-Ruchholtz W (1994) Failure of in vitro T-cell assays to predict clinical outcome after human kidney transplantation. J Clin Lab Anal 8:157–162

    Article  PubMed  CAS  Google Scholar 

  32. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81:447–455

    Article  PubMed  CAS  Google Scholar 

  33. Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kuhl-Burmeister R, Adamzik I, Kabelitz D, Dreger P, Schmitz N, Heiser A (2003) Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 170:5391–5397

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Axel Heiser for his support in performing the Elispot assays. We thank Dr. T. von Hörsten (Medizinische Hochschule Hannover, Germany) for supplying us with the MADB 106 adenocarcinoma cell line. The Iba1 antibody was a kind gift from Dr. Y. Imai (Department of Neurochemistry, National Institute of Neuroscience, Tokyo). The technical support by Mrs. Bärbel Hufnagel is appreciated. This work has been supported by the ‘Interdisziplinäres Zentrum für Krebsforschung der Christian-Albrechts Universität zu Kiel’ and by the ‘Hensel Stiftung’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ginzkey, C., Eicker , S.O., Marget, M. et al. Increase in tumor size following intratumoral injection of immunostimulatory CpG-containing oligonucleotides in a rat glioma model. Cancer Immunol Immunother 59, 541–551 (2010). https://doi.org/10.1007/s00262-009-0771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0771-y

Keywords

Navigation