Skip to main content
Log in

Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are important effectors in the immune response to tumors. A number of cell-surface inhibitory and activating receptors on NK cells tightly regulate their interaction with target cell ligands. In particular, the strength of an anti-tumor immune response appears to depend critically on surface levels of one activating receptor, NKG2D. Correspondingly, expression of NKG2D ligands on target cells is a requirement for effective tumor immunosurveillance and the elimination of pathogen-infected cells. Sodium butyrate, a potent repressor of histone deacetylase (HDAC), has recently been proposed as a potential agent in cancer treatment based on its ability to modify, in several cancer cell types, the expression of a variety of genes related to cell cycle regulation and apoptosis. Here we report that, in the HeLa and HepG2 tumor cell lines, sodium butyrate upregulated the expression of the MHC class I-related chain molecules A and B (MICA and MICB) at both the mRNA and protein levels, resulting in an enhanced susceptibility of cells in both lines to NK lysis. It also led to an elevated expression of heat shock protein 70 (HSP70) and transcription factor Sp1, and increased the binding of transcription factors Sp1 and heat shock transcription factor 1 (HSF1) to the MICA/B promoter, resulting in increased expression of MICA and MICB. siRNA targeting Sp1 significantly attenuate the enhancement of MICA expression by sodium butyrate. These results suggest that sodium butyrate and other HDAC inhibitors may have therapeutic potential by enhancing the immune response to cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NK:

Natural killer

CTL:

Cytotoxic T lymphocytes

NKG2D:

Natural killer group 2D

NKG2A:

Natural killer group 2A

IFN:

Interferon

MIC:

MHC class I-related chain

sMICA:

Soluble MICA

MHC:

Major histocompatibility complex

ULBP:

UL16-binding proteins

HSF1:

Heat shock factor 1

HSE:

Heat shock element

Sp1:

Specificity protein 1

HDAC:

Histone deacetylase

HATs:

Histone acetyltransferases

SB:

Sodium butyrate

VPA:

Sodium valproate

HSP:

Heat shock protein

TSA:

Trichostatin A

ChIP:

Chromatin immunoprecipitation

References

  1. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1:41–49

    Article  PubMed  CAS  Google Scholar 

  2. Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    Article  PubMed  CAS  Google Scholar 

  3. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  PubMed  CAS  Google Scholar 

  4. Watzl C (2003) The NKG2D receptor and its ligands-recognition beyond the “missing self”? Microbes Infect 5:31–37

    Article  PubMed  CAS  Google Scholar 

  5. Cerwenka A, Lanier LL (2003) NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigen 61:335–343

    Article  CAS  Google Scholar 

  6. López-Larrea C, Suárez-Alvarez B, López-Soto A, López-Vázquez A, Gonzalez S (2008) The NKG2D receptor: sensing stressed cells. Trends Mol Med 14:179–189

    Article  PubMed  Google Scholar 

  7. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    Article  PubMed  CAS  Google Scholar 

  8. Gasser S, Rault DH (2006) The DNA damage response arouses the immune system. Cancer Res 66:3959–3962

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H (2001) Oxidative stress increases MICA and MICB gene expression in the human colon carcinoma cell line (CaCo-2). Biochim Biophys Acta 1526:10–12

    PubMed  CAS  Google Scholar 

  10. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432

    Article  PubMed  CAS  Google Scholar 

  11. Armeanu S, Bitzer M, Lauer UM, Venturelli S, Pathil A, Krusch M, Kaiser S, Jobst J, Smirnow I, Wagner A, Steinle A, Salih HR (2005) Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 65:6321–6329

    Article  PubMed  CAS  Google Scholar 

  12. Kato N, Tanaka J, Sugita J, Toubai T, Miura Y, Ibata M, Syono Y, Ota S, Kondo T, Asaka M, Imamura M (2007) Regulation of the expression of MHC class I-related chain A, B (MICA, MICB) via chromatin remodeling and its impact on the susceptibility of leukemic cells to the cytotoxicity of NKG2D-expressing cells. Leukemia 21:2103–2108

    Article  PubMed  CAS  Google Scholar 

  13. Muhlethaler-Mottet A, Meier R, Flahaut M, Bourloud KB, Nardou K, Joseph JM, Gross N (2008) Complex molecular mechanisms cooperate to mediate histone deacetylase inhibitors anti-tumour activity in neuroblastoma cells. Mol Cancer 7:55

    Article  PubMed  Google Scholar 

  14. Zhang C, Niu J, Zhang J, Wang Y, Zhou Z, Zhang J, Tian Z (2008) Opposing effect of IFNα and IFNγ on expression of MHC class I chain-related A in tumors. Cancer Sci 99:1279–1286

    Article  PubMed  CAS  Google Scholar 

  15. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942

    Article  PubMed  CAS  Google Scholar 

  16. Nausch N, Florin L, Hartenstein B, Angel P, Schorpp-Kistner M, Cerwenka A (2006) Cutting edge: the AP-1 subunit JunB determines NK cell-mediated target cell killing by regulation of the NKG2D-ligand RAE-1epsilon. J Immunol 176:7–11

    PubMed  CAS  Google Scholar 

  17. Rodríguez-Rodero S, González S, Rodrigo L, Fernández-Morera JL, Martínez-Borra J, López-Vázquez A, López-Larrea C (2007) Transcriptional regulation of MICA and MICB: a novel polymorphism in MICB promoter alters transcriptional regulation by Sp1. Eur J Immunol 37:1938–1953

    Article  PubMed  Google Scholar 

  18. Venkataraman GM, Suciu D, Groh V, Boss JM, Spies T (2007) Promoter region architecture and transcriptional regulation of the genes for the MHC class I-related Chain A and B ligands of NKG2D. J Immunol 178:961–969

    PubMed  CAS  Google Scholar 

  19. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  20. Tomasi TB, Magner WJ, Khan AN (2006) Epigenetic regulation of immune escape genes in cancer. Cancer Immunol Immunother 55:1159–1184

    Article  PubMed  Google Scholar 

  21. Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16

    Article  PubMed  CAS  Google Scholar 

  22. Pan LN, Lu J, Huang B (2007) HDAC inhibitors: a potential new category of anti-tumor agents. Cell Mol Immunol 4:337–343

    PubMed  CAS  Google Scholar 

  23. Xu J, Zhou JY, Wei WZ, Philipsen S, Wu GS (2008) Sp1-mediated TRAIL induction in chemosensitization. Cancer Res 68:6718–6726

    Article  PubMed  CAS  Google Scholar 

  24. Chinnaiyan P, Cerna D, Burgan WE, Beam K, Williams ES, Camphausen K, Tofilon PJ (2008) Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin Cancer Res 14:5410–5415

    Article  PubMed  CAS  Google Scholar 

  25. Ryu H, Lee J, Olofsson BA, Mwidau A, Dedeoglu A, Escudero M, Flemington E, Azizkhan-Clifford J, Ferrante RJ, Ratan RR (2003) Histone deacetylase inhibitors prevent oxidative neuronal death independent of expanded polyglutamine repeats via an Sp1-dependent pathway. Proc Natl Acad Sci USA 100:4281–4286

    Article  PubMed  CAS  Google Scholar 

  26. Kim YK, Lee EK, Kang JK, Kim JA, You JS, Park JH, Seo DW, Hwang JW, Kim SN, Lee HY, Lee HW, Han JW (2006) Activation of NF-kappaB by HDAC inhibitor apicidin through Sp1-dependent de novo protein synthesis: its implication for resistance to apoptosis. Cell Death Differ 13:2033–2041

    Article  PubMed  CAS  Google Scholar 

  27. Andresen L, Jensen H, Pedersen MT, Hansen KA, Skov S (2007) Molecular regulation of MHC class I chain-related protein A expression after HDAC-inhibitor treatment of Jurkat T cells. J Immunol 179:8235–8242

    PubMed  CAS  Google Scholar 

  28. Seo HR, Chung DY, Lee YJ, Lee DH, Kim JI, Bae S, Chung HY, Lee SJ, Jeoung D, Lee YS (2006) Heat shock protein 25 or inducible heat shock protein 70 activates heat shock factor 1: dephosphorylation on serine 307 through inhibition of ERK1/2 phosphorylation. J Biol Chem 281:17220–17227

    Article  PubMed  CAS  Google Scholar 

  29. Kim YH, Park JW, Lee JY, Kwon TK (2004) Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis 25:1813–1820

    Article  PubMed  Google Scholar 

  30. Pajak B, Orzechowski A (2007) Sodium butyrate-dependent sensitization of human colon adenocarcinoma COLO 205 cells to TNF-alpha-induced apoptosis. J Physiol Pharmacol 58(Suppl 3):163–176

    PubMed  Google Scholar 

  31. Kramer OH, Gottlicher M, Heinzel T (2001) Histone deacetylase as a therapeutic agent. Trends Endocrinol Metab 12:294–300

    Article  PubMed  CAS  Google Scholar 

  32. McIntyne A, Gibson PR, Young GP (1993) Butyrate production from dietary fibers and protection against large bowel cancer in a rat model. Gut 34:386–391

    Article  Google Scholar 

  33. Glaser KB (2007) HDAC inhibitors: Clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671

    Article  PubMed  CAS  Google Scholar 

  34. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  PubMed  CAS  Google Scholar 

  35. Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B, Vyas YM (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    PubMed  CAS  Google Scholar 

  36. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937

    Article  PubMed  CAS  Google Scholar 

  37. Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC (2001) Jabri B (2001) NKG2D receptors induced by IL–15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol 167:5527–5530

    PubMed  CAS  Google Scholar 

  38. Zhang C, Zhang J, Niu J, Zhang J, Tian Z (2008) Interleukin-15 improves cytotoxicity of natural killer cells via up-regulating NKG2D and cytotoxic effector molecule expression as well as STAT1 and ERK1/2 phosphorylation. Cytokine 42:128–136

    Article  PubMed  CAS  Google Scholar 

  39. Zhang C, Zhang J, Niu J, Zhou Z, Zhang J, Tian Z (2008) Interleukin-12 improves cytotoxicity of natural killer cells via upregulated expression of NKG2D. Hum Immunol 69:490–500

    Article  PubMed  CAS  Google Scholar 

  40. Zhang C, Zhang J, Sun R, Feng J, Wei H, Tian Z (2005) Opposing effect of IFNγ and IFNα on expression of NKG2 receptor family: negative regulation of IFNγ on NK cells. Int Immunopharmacol 5:1057–1067

    Article  PubMed  CAS  Google Scholar 

  41. Wu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114:560–568

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (No. 30371302, No. 30671901, No. 30628014, and No. 90713033) and the Major State Basic Research Development Program of China (973 Program) (No. 2004CB518807, No. 2006CB504300, and No. 2007CB815800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cai Zhang or Zhigang Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Wang, Y., Zhou, Z. et al. Sodium butyrate upregulates expression of NKG2D ligand MICA/B in HeLa and HepG2 cell lines and increases their susceptibility to NK lysis. Cancer Immunol Immunother 58, 1275–1285 (2009). https://doi.org/10.1007/s00262-008-0645-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0645-8

Keywords

Navigation