Skip to main content
Log in

Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

An elevated number of Gr-1+CD11b+ myeloid-derived suppression cells (MDSCs) has been described in mice and human bearing tumor and associated with immune suppression. Arginase I production by MDSCs in the tumor environment may be a central mechanism for immunosuppression and tumor evasion. In this study and before, we found that Gr-1+CD11b+ MDSCs from ascites and spleen of mice bearing ovarian 18D carcinoma express a high level of PD-1, CTLA-4, B7-H1 and CD80 while other co-stimulatory molecules, namely CD40, B7-DC and CD86 are not detected. Further studies showed that PD-1 and CTLA-4 on the Gr-1+CD11b+ MDSCs regulated the activity and expression of arginase I. The blockage and silencing of PD-1, CTLA-4 or both PD-1 and CTLA4 molecules could significantly reduce arginase I activity and expression induced with tumor-associated factor. Similar results were also observed while their ligands B7-H1 and/or CD80 were blocked or silenced. Furthermore, CD80 deficiency also decreased the arginase I expression and activity. Antibody blockade or silencing of PD-1, CTLA-4 or both reduced the suppressive potential of PD-1+CTLA-4+MDSCs. Blockade of PD-1, CTLA-4 or both also slowed tumor growth and improved the survival rate of tumor-bearing mice. Thus, there may exist a coinhibitory and costimulatory molecules-based immuno-regulating wet among MDSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Young MR, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J Immunol 156:1916–1922

    PubMed  CAS  Google Scholar 

  2. Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T (1996) Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 zeta chain of T-cell receptor complex and antigen-specific T-cell responses. Proc Natl Acad Sci USA 93:13119–13124

    Article  PubMed  CAS  Google Scholar 

  3. Kono K, Salazar-Onfray F, Petersson M, Hansson J, Masucci G, Wasserman K, Nakazawa T, Anderson P, Kiessling R (1996) Hydrogen peroxide secreted by tumor-derived macrophages down-modulates signal-transducing zeta molecules and inhibits tumor-specific T cell-and natural killer cell-mediated cytotoxicity. Eur J Immunol 26:1308–1313

    Article  PubMed  CAS  Google Scholar 

  4. Fu YX, Watson GA, Kasahara M, Lopez DM (1991) The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF. J Immunol 146:783–789

    PubMed  CAS  Google Scholar 

  5. Bronte V, Serafini P, Apolloni E, Zanovello P (2001) Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother 24:431–446

    Article  PubMed  CAS  Google Scholar 

  6. Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB–2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145

    Article  PubMed  CAS  Google Scholar 

  7. Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196

    Article  PubMed  CAS  Google Scholar 

  8. Serafini P, De Santo C, Marigo I, Cingarlini S, Dolcetti L, Gallina G, Zanovello P, Bronte V (2004) Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 53:64–72

    Article  PubMed  CAS  Google Scholar 

  9. Frey AB (2006) Myeloid suppressor cells regulate the adaptive immune response to cancer. J Clin Invest 116:2587–2590

    Article  PubMed  CAS  Google Scholar 

  10. Seung LP, Rowley DA, Dubey P, Schreiber H (1995) Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA 92:6254–6258

    Article  PubMed  CAS  Google Scholar 

  11. Allez M, Mayer L (2004) Regulatory T cells: peace keepers in the gut. Inflamm Bowel Dis 10:666–676

    Article  PubMed  Google Scholar 

  12. Mills SL, Catania KC (2004) Identification of retinal neurons in a regressive rodent eye (the naked mole-rat). Vis Neurosci 21:107–117

    Article  PubMed  Google Scholar 

  13. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM (2002) Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol 168:689–695

    PubMed  CAS  Google Scholar 

  14. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC (2005) Arginase I in myeloid suppressor cells is induced by COX–2 in lung carcinoma. J Exp Med 202:931–939

    Article  PubMed  CAS  Google Scholar 

  15. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, Antonia S, Ochoa JB, Ochoa AC (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    Article  PubMed  CAS  Google Scholar 

  16. Morris SM Jr (2004) Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care 7:45–51

    Article  PubMed  CAS  Google Scholar 

  17. Roby KF, Taylor CC, Sweetwood JP, Cheng Y, Pace JL, Tawfik O, Persons DL, Smith PG, Terranova PF (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21:585–591

    Article  PubMed  CAS  Google Scholar 

  18. Tseng JC, Hurtado A, Yee H, Levin B, Boivin C, Benet M, Blank SV, Pellicer A, Meruelo D (2004) Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 64:6684–6692

    Article  PubMed  CAS  Google Scholar 

  19. Corraliza IM, Campo ML, Soler G, Modolell M (1994) Determination of arginase activity in macrophages: a micromethod. J Immunol Methods 174:231–235

    Article  PubMed  CAS  Google Scholar 

  20. Yang R, Cai Z, Zhang Y, WHt Yutzy, Roby KF, Roden RB (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+myeloid cells. Cancer Res 66:6807–6815

    Article  PubMed  CAS  Google Scholar 

  21. Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272:1170–1173

    Article  PubMed  CAS  Google Scholar 

  22. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci USA 98:13866–13871

    Article  PubMed  CAS  Google Scholar 

  23. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  PubMed  CAS  Google Scholar 

  24. Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P (2005) Studying the immunosuppressive role of indoleamine 2, 3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int 18:95–100

    Article  PubMed  CAS  Google Scholar 

  25. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    Article  PubMed  CAS  Google Scholar 

  26. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Article  PubMed  CAS  Google Scholar 

  27. Bluestone JA (1997) Is CTLA-4 a master switch for peripheral T cell tolerance? J Immunol 158:1989–1993

    PubMed  CAS  Google Scholar 

  28. Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    Article  PubMed  Google Scholar 

  29. Chitnis T, Najafian N, Abdallah KA, Dong V, Yagita H, Sayegh MH, Khoury SJ (2001) CD28-independent induction of experimental autoimmune encephalomyelitis. J Clin Invest 107:575–583

    Article  PubMed  CAS  Google Scholar 

  30. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184:783–788

    Article  PubMed  CAS  Google Scholar 

  31. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  PubMed  CAS  Google Scholar 

  32. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    Article  PubMed  CAS  Google Scholar 

  33. Porembska Z, Luboinski G, Chrzanowska A, Mielczarek M, Magnuska J, Baranczyk-Kuzma A (2003) Arginase in patients with breast cancer. Clin Chim Acta 328:105–111

    Article  PubMed  CAS  Google Scholar 

  34. Porembska Z, Skwarek A, Mielczarek M, Baranczyk-Kuzma A (2002) Serum arginase activity in postsurgical monitoring of patients with colorectal carcinoma. Cancer 94:2930–2934

    Article  PubMed  CAS  Google Scholar 

  35. Gokmen SS, Aygit AC, Ayhan MS, Yorulmaz F, Gulen S (2001) Significance of arginase and ornithine in malignant tumors of the human skin. J Lab Clin Med 137:340–344

    Article  PubMed  CAS  Google Scholar 

  36. Keskinege A, Elgun S, Yilmaz E (2001) Possible implications of arginase and diamine oxidase in prostatic carcinoma. Cancer Detect Prev 25:76–79

    PubMed  CAS  Google Scholar 

  37. Liu Y, Van Ginderachter JA, Brys L, De Baetselier P, Raes G, Geldhof AB (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170:5064–5074

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcun Yang.

Additional information

This research was supported by Nankai University grant, NSFC grant “30771967”, “985” grant,The Ministry of Science and Technology grant “2006AA020502”“06C26211200695”, Tianjin Grant “07JCZDJC03300” and “06ZHCXSH04800”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yu, Y., Yang, S. et al. Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol Immunother 58, 687–697 (2009). https://doi.org/10.1007/s00262-008-0591-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0591-5

Keywords

Navigation