Skip to main content

Advertisement

Log in

A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

HLA multimers are now widely used to stain and sort CD8 T lymphocytes specific for epitopes from viral or tumoral antigens presented in an HLA class I context. However, the transfer of this technology to a clinical setting to obtain clinical grade CD8 T lymphocytes that may be used in adoptive cell transfer (ACT) is hindered by two main obstacles: the first obstacle is the use of streptavidin or derived products that are not available in clinical grade to multimerize HLA/peptide monomers and the second is the reported high degree of apoptosis that eventually occurs when T cell receptors are crosslinked by HLA multimers. In the present report, we describe new HLA multimers composed of immunomagnetic beads covalently coupled to a mAb specific for the AviTag peptide and coated with HLA/peptide monomers bearing the non biotinylated AviTag at the COOH terminus of the HLA heavy chain. Thus, all the components of this new reagent can be obtained in clinical grade. We compared these new multimers with the previously described multimers made with streptavidin beads coated with biotinylated HLA/peptide monomers, in terms of sorting efficiency, recovery of functional T cells, apoptosis and activation. We provide evidence that the new multimers could very efficiently sort pure populations of T lymphocytes specific for three different melanoma antigens (Melan-A, gp100 and NA17-A) after a single peptide stimulation of melanoma patients’ PBMC. The recovered specific T cells were cytotoxic against the relevant melanoma cell-lines and, in most cases, produced cytokines. In addition, in marked contrast with streptavidin-based multimers, our new multimers induced very little apoptosis or activation after binding specific T lymphocytes. Altogether, these new multimers fulfill all the necessary requirements to select clinical grade T lymphocytes and should facilitate the development of ACT protocols in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACT:

Adoptive cell therapy

AICD:

Activation induced cell death

CMV:

Cytomegalovirus

EBV:

Epstein–Barr virus

GMP:

Good manufacturing practice

CTL:

Cytotoxic T lymphocyte

DC:

Dendritic cell

HLA:

Human leucotyte antigen

PBMC:

Peripheral blood mononuclear cells

TCR:

T cell receptor

TIL:

Tumor inflitrating lymphocyte

References

  1. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92:1549–1555

    PubMed  CAS  Google Scholar 

  2. Gustafsson A, Levitsky V, Zou JZ , Frisan T, Dalianis T, Ljungman P, Ringden O, Winiarski J, Ernberg I, Masucci MG (2000) Epstein–Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 95:807–814

    PubMed  CAS  Google Scholar 

  3. Savoldo B, Goss JA, Hammer MM, Zhang L, Lopez T, Gee AP, Lin YF, Quiros-Tejeira RE, Reinke P, Schubert S, Gottschalk S, Finegold MJ, Brenner MK, Rooney CM, Heslop HE (2006) Treatment of solid organ transplant recipients with autologous Epstein–Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108:2942–2949

    Article  PubMed  CAS  Google Scholar 

  4. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465

    PubMed  CAS  Google Scholar 

  5. Dreno B, Nguyen JM, Khammari A, Pandolfino MC, Tessier MH, Bercegeay S, Cassidanius A, Lemarre P, Billaudel S, Labarriere N, Jotereau F (2002) Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage III melanoma. Cancer Immunol Immunother 51:539–546

    Article  PubMed  CAS  Google Scholar 

  6. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854

    Article  PubMed  CAS  Google Scholar 

  7. Labarriere N, Pandolfino MC, Gervois N, Khammari A, Tessier MH, Dreno B, Jotereau F (2002) Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients. Cancer Immunol Immunother 51:532–538

    Article  PubMed  CAS  Google Scholar 

  8. Guillaume P, Legler DF, Boucheron N, Doucey MA, Cerottini JC, Luescher IF (2003) Soluble major histocompatibility complex-peptide octamers with impaired CD8 binding selectively induce Fas-dependent apoptosis. J Biol Chem 278:4500–4509

    Article  PubMed  CAS  Google Scholar 

  9. Cebecauer M, Guillaume P, Hozak P, Mark S, Everett H, Schneider P, Luescher IF (2005) Soluble MHC-peptide complexes induce rapid death of CD8 + CTL. J Immunol 174:6809–6819

    PubMed  CAS  Google Scholar 

  10. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  PubMed  CAS  Google Scholar 

  11. Bodinier M, Peyrat MA, Tournay C, Davodeau F, Romagne F, Bonneville M, Lang F (2000) Efficient detection and immunomagnetic sorting of specific T cells using multimers of MHC class I and peptide with reduced CD8 binding. Nat Med 6:707–710

    Article  PubMed  CAS  Google Scholar 

  12. Labarriere N, Gervois N, Bonnin A, Bouquie R, Jotereau F, Lang F (2008) PBMC are as good a source of tumor-reactive T lymphocytes as TIL after selection by Melan-A/A2 multimer immunomagnetic sorting. Cancer Immunol Immunother 57:185–195

    Article  PubMed  Google Scholar 

  13. Gervois N, Heuze F, Diez E, Jotereau F (1990) Selective expansion of a specific anti-tumor CD8 + cytotoxic T lymphocyte clone in the bulk culture of tumor-infiltrating lymphocytes from a melanoma patient: cytotoxic activity and T cell receptor gene rearrangements. Eur J Immunol 20:825–831

    Article  PubMed  CAS  Google Scholar 

  14. Jotereau F, Pandolfino MC, Boudart D, Diez E, Dreno B, Douillard JY, Muller JY (1991) LeMevel B (1991) High-fold expansion of human cytotoxic T-lymphocytes specific for autologous melanoma cells for use in immunotherapy. J Immunother 10:405–411

    Article  PubMed  CAS  Google Scholar 

  15. Valmori D, Fonteneau JF, Lizana CM, Gervois N, Lienard D, Rimoldi D, Jongeneel V, Jotereau F, Cerottini JC, Romero P (1998) Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 160:1750–1758

    PubMed  CAS  Google Scholar 

  16. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff CL Jr (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. Science 264:716–719

    Article  PubMed  CAS  Google Scholar 

  17. Guilloux Y, Lucas S, Brichard VG, Van Pel A, Viret C, De Plaen E, Brasseur F, Lethe B, Jotereau F, Boon T (1996) A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 183:1173–1183

    Article  PubMed  CAS  Google Scholar 

  18. Vignard V, Lemercier B, Lim A, Pandolfino MC, Guilloux Y, Khammari A, Rabu C, Echasserieau K, Lang F, Gougeon ML, Dreno B, Jotereau F, Labarriere N (2005) Adoptive transfer of tumor-reactive Melan-A-specific CTL clones in melanoma patients is followed by increased frequencies of additional Melan-A-specific T cells. J Immunol 175:4797–4805

    PubMed  CAS  Google Scholar 

  19. Gervois N, Labarriere N, Le Guiner S, Pandolfino MC, Fonteneau JF, Guilloux Y, Diez E, Dreno B, Jotereau F (2000) High avidity melanoma-reactive cytotoxic T lymphocytes are efficiently induced from peripheral blood lymphocytes on stimulation by peptide-pulsed melanoma cells. Clin Cancer Res 6:1459–1467

    PubMed  CAS  Google Scholar 

  20. Cole DJ, Wilson MC, Rivoltini L, Custer M, Nishimura MI (1997) T-cell receptor repertoire in matched MART-1 peptide-stimulated peripheral blood lymphocytes and tumor-infiltrating lymphocytes. Cancer Res 57:5320–5327

    PubMed  CAS  Google Scholar 

  21. Mackensen A, Meidenbauer N, Vogl S, Laumer M, Berger J, Andreesen R (2006) Phase I study of adoptive T-cell therapy using antigen-specific CD8 + T cells for the treatment of patients with metastatic melanoma. J Clin Oncol 24:5060–5069

    Article  PubMed  CAS  Google Scholar 

  22. Labarriere N, Bretaudeau L, Gervois N, Bodinier M, Bougras G, Diez E, Lang F, Gregoire M, Jotereau F (2002) Apoptotic body-loaded dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for NA17-A antigen but not for Melan-A/MART-1 antigen. Int J Cancer 101:280–286

    Article  PubMed  CAS  Google Scholar 

  23. Yang S, Linette GP, Longerich S, Haluska FG (2002) Antimelanoma activity of CTL generated from peripheral blood mononuclear cells after stimulation with autologous dendritic cells pulsed with melanoma gp100 peptide G209–2 M is correlated to TCR avidity. J Immunol 169:531–539

    PubMed  CAS  Google Scholar 

  24. Cebecauer M, Guillaume P, Mark S, Michielin O, Boucheron N, Bezard M, Meyer BH, Segura JM, Vogel H, Luescher IF (2005) CD8 + cytotoxic T lymphocyte activation by soluble major histocompatibility complex-peptide dimers. J Biol Chem 280:23820–23828

    Article  PubMed  CAS  Google Scholar 

  25. Freitag S, Le Trong I, Klumb L, Stayton PS, Stenkamp RE (1997) Structural studies of the streptavidin binding loop. Protein Sci 6:1157–1166

    Article  PubMed  CAS  Google Scholar 

  26. Dutoit V, Rubio-Godoy V, Dietrich PY, Quiqueres AL, Schnuriger V, Rimoldi D, Lienard D, Speiser D, Guillaume P, Batard P, Cerottini JC, Romero P, Valmori D (2001) Heterogeneous T-cell response to MAGE-A10(254–262): high avidity-specific cytolytic T lymphocytes show superior antitumor activity. Cancer Res 61:5850–5856

    PubMed  CAS  Google Scholar 

  27. Creagh EM, Conroy H, Martin SJ (2003) Caspase-activation pathways in apoptosis and immunity. Immunol Rev 193:10–21

    Article  PubMed  CAS  Google Scholar 

  28. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  29. Gulow K, Kaminski M, Darvas K, Suss D, Li-Weber M, Krammer PH (2005) HIV-1 trans-activator of transcription substitutes for oxidative signaling in activation-induced T cell death. J Immunol 174:5249–5260

    PubMed  Google Scholar 

  30. Knabel M, Franz TJ, Schiemann M, Wulf A, Villmow B, Schmidt B, Bernhard H, Wagner H, Busch DH (2002) Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8:631–637

    Article  PubMed  CAS  Google Scholar 

  31. Neudorfer J, Schmidt B, Huster KM, Anderl F, Schiemann M, Holzapfel G, Schmidt T, Germeroth L, Wagner H, Peschel C, Busch DH, Bernhard H (2007) Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Meth 320:119–131

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the «Ligue Nationale contre le Cancer» (labellisation 2003–2007) and by a grant from INCa “Thérapie adoptive cellulaire du cancer”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouquié, R., Bonnin, A., Bernardeau, K. et al. A fast and efficient HLA multimer-based sorting procedure that induces little apoptosis to isolate clinical grade human tumor specific T lymphocytes. Cancer Immunol Immunother 58, 553–566 (2009). https://doi.org/10.1007/s00262-008-0578-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0578-2

Keywords

Navigation