Skip to main content

Advertisement

Log in

Therapeutic efficacy of antitumor dendritic cell vaccinations correlates with persistent Th1 responses, high intratumor CD8+ T cell recruitment and low relative regulatory T cell infiltration

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Despite the increasing number of immunotherapeutic strategies for the treatment of cancer, most approaches have failed to correlate the induction of an anti-tumor immune response with therapeutic efficacy. We therefore took advantage of a successful vaccination strategy—combining dendritic cells and irradiated GM-CSF secreting tumor cells—to compare the immune response induced against 9L gliosarcoma tumors in cured rats versus those with progressively growing tumors. At the systemic level, the tumor specific cytotoxic responses were quite heterogeneous in uncured vaccinated rats, and were surprisingly often high in animals with rapidly-growing tumors. IFN-γ secretion by activated splenic T cells was more discriminative as the CD4+ T cell-mediated production was weak in uncured rats whereas high in cured ones. At the tumor level, regressing tumors were strongly infiltrated by CD8+ T cells, which demonstrated lytic capacities as high as their splenic counterparts. In contrast, progressing tumors were weakly infiltrated by T cells showing impaired cytotoxic activities. Proportionately to the T cell infiltrate, the expression of Foxp3 was increased in progressive tumors suggesting inhibition by regulatory T cells. In conclusion, the main difference between cured and uncured vaccinated animals does not depend directly upon the induction of systemic cytotoxic responses. Rather the persistence of higher CD4+ Th1 responses, a high intratumoral recruitment of functional CD8+ T cells, and a low proportion of regulatory T cells correlate with tumor rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTL:

Cytotoxic T lymphocytes

DC:

Dendritic cells

Treg:

Regulatory T cells

TIL:

Tumor-infiltrating lymphocytes

References

  1. Baecher-Allan C, Anderson DE (2006) Immune regulation in tumor-bearing hosts. Curr Opin Immunol 18:214–219

    Article  PubMed  CAS  Google Scholar 

  2. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186:65–70

    Article  PubMed  CAS  Google Scholar 

  3. Chen-Woan M, Delaney CP, Fournier V, Wakizaka Y, Murase N, Fung J, Starzl TE, Demetris AJ (1995) A new protocol for the propagation of dendritic cells from rat bone marrow using recombinant GM-CSF, and their quantification using the mAb OX-62. J Immunol Methods 178:157–171

    Article  PubMed  CAS  Google Scholar 

  4. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, Kryczek I, Daniel B, Gordon A, Myers L, Lackner A, Disis ML, Knutson KL, Chen L, Zou W (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  5. Dranoff G (2003) GM-CSF-secreting melanoma vaccines. Oncogene 22:3188–3192

    Article  PubMed  CAS  Google Scholar 

  6. Driessens G, Hamdane M, Cool V, Velu T, Bruyns C (2004) Highly successful therapeutic vaccinations combining dendritic cells and tumor cells secreting granulocyte macrophage colony-stimulating factor. Cancer Res 64:8435–8442

    Article  PubMed  CAS  Google Scholar 

  7. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  PubMed  CAS  Google Scholar 

  8. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302

    Article  PubMed  CAS  Google Scholar 

  9. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  10. Gao FG, Khammanivong V, Liu WJ, Leggatt GR, Frazer IH, Fernando GJ (2002) Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res 62:6438–6441

    PubMed  CAS  Google Scholar 

  11. Herrlinger UC, Kramm M, Johnston KM, Louis DN, Finkelstein D, Reznikoff G, Dranoff G, Breakefield XO, Yu JS (1997) Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 4:345–352

    PubMed  CAS  Google Scholar 

  12. Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y, Itoh T, Ohbuchi T, Kondo S, Katoh H (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280

    Article  PubMed  CAS  Google Scholar 

  13. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  14. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368

    Article  PubMed  CAS  Google Scholar 

  15. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421:852–856

    Article  PubMed  CAS  Google Scholar 

  16. Kanagawa N, Niwa M, Hatanaka Y, Tani Y, Nakagawa S, Fujita T, Yamamoto A, Okada N (2007) CC-chemokine ligand 17 gene therapy induces tumor regression through augmentation of tumor-infiltrating immune cells in a murine model of preexisting CT26 colon carcinoma. Int J Cancer 121:2013–2022

    Article  PubMed  CAS  Google Scholar 

  17. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721–728

    Article  PubMed  CAS  Google Scholar 

  18. Lechanteur C, Moutschen M, Princen F, Lopez M, Franzen E, Gielen J, Bours V, Merville MP (2000) Antitumoral vaccination with granulocyte-macrophage colony-stimulating factor or interleukin-12-expressing DHD/K12 colon adenocarcinoma cells. Cancer Gene Ther 7:676–682

    Article  PubMed  CAS  Google Scholar 

  19. Lefranc F, Cool V, Velu T, Brotchi J, De Witte O (2002) Granulocyte macrophage-colony stimulating factor gene transfer to induce a protective anti-tumoral immune response against the 9L rat gliosarcoma model. Int J Oncol 20:1077–1085

    PubMed  CAS  Google Scholar 

  20. Liakou CI, Narayanan S, Tang DN, Logothetis CJ, Sharma P (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human bladder cancer. Cancer Immun 7:10–15

    PubMed  Google Scholar 

  21. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  22. Melief CJ (1992) Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res 58:143–175

    Article  PubMed  CAS  Google Scholar 

  23. Nakajima C, Uekusa Y, Iwasaki M, Yamaguchi N, Mukai T, Gao P, Tomura M, Ono S, Tsujimura T, Fujiwara H, Hamaoka T (2001) A role of interferon-gamma (IFN-gamma) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-gamma-deficient mice. Cancer Res 61:3399–3405

    PubMed  CAS  Google Scholar 

  24. Nishikawa H, Kato T, Tawara I, Ikeda H, Kuribayashi K, Allen PM, Schreiber RD, Old LJ, Shiku H (2005) IFN-gamma controls the generation/activation of CD4+ CD25+ regulatory T cells in antitumor immune response. J Immunol 175:4433–4440

    PubMed  CAS  Google Scholar 

  25. Ossendorp F, Toes RE, Offringa R, van der Burg SH, Melief CJ (2000) Importance of CD4(+) T helper cell responses in tumor immunity. Immunol Lett 74:75–79

    Article  PubMed  CAS  Google Scholar 

  26. Overwijk WW (2005) Breaking tolerance in cancer immunotherapy: time to ACT. Curr Opin Immunol 17:187–194

    Article  PubMed  CAS  Google Scholar 

  27. Piersma SJ, Jordanova ES, van Poelgeest MI, Kwappenberg KM, van der Hulst JM, Drijfhout JW, Melief CJ, Kenter GG, Fleuren GJ, Offringa R, van der Burg SH (2007) High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res 67:354–361

    Article  PubMed  CAS  Google Scholar 

  28. Pure E, Allison JP, Schreiber RD (2005) Breaking down the barriers to cancer immunotherapy. Nat Immunol 6:1207–1210

    Article  PubMed  CAS  Google Scholar 

  29. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116:1935–1945

    Article  PubMed  CAS  Google Scholar 

  30. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  31. Rosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, Royal RE, Kammula U, Restifo NP, Hughes MS, Schwartzentruber D, Berman DM, Schwarz SL, Ngo LT, Mavroukakis SA, White DE, Steinberg SM (2005) Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol 175:6169–6176

    PubMed  CAS  Google Scholar 

  32. Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A 102:18538–18543

    Article  PubMed  CAS  Google Scholar 

  33. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393:480–483

    Article  PubMed  CAS  Google Scholar 

  34. Sheu BC, Lin RH, Lien HC, Ho HN, Hsu SM Huang SC (2001) Predominant Th2/Tc2 polarity of tumor-infiltrating lymphocytes in human cervical cancer. J Immunol 167:2972–2978

    PubMed  CAS  Google Scholar 

  35. Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, Zhang Y, Zhang L, Yuan ZR, Tan HS, Das G, Devadas S (2006) Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res 16:126–133

    Article  PubMed  CAS  Google Scholar 

  36. Stordeur P, Zhou L, Byl B, Brohet F, Burny W, de Groote D, van der Poll T, Goldman M (2003) Immune monitoring in whole blood using real-time PCR. J Immunol Methods 276:69–77

    Article  PubMed  CAS  Google Scholar 

  37. Strehl B, Seifert U, Kruger E, Heink S, Kuckelkorn U, Kloetzel PM (2005) Interferon-gamma, the functional plasticity of the ubiquitin-proteasome system, and MHC class I antigen processing. Immunol Rev 207:19–30

    Article  PubMed  CAS  Google Scholar 

  38. Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5:927–933

    Article  PubMed  CAS  Google Scholar 

  39. Wang LX, Shu S, Disis ML, Plautz GE (2007) Adoptive transfer of tumor-primed, in vitro-activated, CD4+ T effector cells (TEs) combined with CD8+ TEs provides intratumoral TE proliferation and synergistic antitumor response. Blood 109:4865–4872

    Article  PubMed  CAS  Google Scholar 

  40. Zhou G, Drake CG, Levitsky HI (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107:628–636

    Article  PubMed  CAS  Google Scholar 

  41. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We deeply thank the Dr J. Kline and Dr. G. Vassart for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Driessens.

Additional information

Grant support: G. Driessens was fellow of the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA), and Télévie. This work was supported by the Belgian State, Prime Minister’s office, Service for Science, Technology, and Culture, the Fonds National de la Recherche Scientifique, the Fonds de la Recherche Scientifique Médicale, the Actions de Recherche Concertées of the Communauté Française de Belgique and Télévie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driessens, G., Gordower, L., Nuttin, L. et al. Therapeutic efficacy of antitumor dendritic cell vaccinations correlates with persistent Th1 responses, high intratumor CD8+ T cell recruitment and low relative regulatory T cell infiltration. Cancer Immunol Immunother 57, 1745–1756 (2008). https://doi.org/10.1007/s00262-008-0500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0500-y

Keywords

Navigation