Skip to main content

Advertisement

Log in

Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Macrophages are considered a key component of the immunosuppressive environment present in solid tumors, where they support tumor growth through the production of pro-angiogenic factors and active suppression of effector immune responses. Zoledronic acid (ZA), an aminobisphosphonate clinically approved for treatment of symptomatic skeletal events, has recently been shown to have immunomodulatory properties that can be exploited in cancer immunotherapy. Here, we utilize an in vitro model of prostate cancer cell–macrophage interaction to dissect the effect of ZA, on the function of prostate cancer tumor-associated macrophages (PC-TAM). We show that prostate cancer cells recruit macrophages, which in turn express a variety of proangiogenic and immunosuppressive mediators. ZA selectively suppressed the expression of MMP-9 by PC-TAM, whereas the expression of other mediators was not limited. PC-TAM treated with ZA, on the other hand, could effectively drive the proliferation of activated Tγδ lymphocytes, which lysed bisphosphonate-pulsed prostate cancer cells. Moreover, ZA boosted the production of type-1 cytokines by PC-TAM in response to immunomodulators such as IL-12 and polyI:C, which are known to polarize macrophages towards an anti-tumoral M1 phenotype. Overall, we provide evidence that ZA shifts the balance of PC-TAM from a tumor promoting to a tumor-eliminating phenotype and also suggest a potential use of this pharmacological agent as an immunotherapeutic adjuvant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  2. Bonneville M, Scotet E (2006) Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 18:539–546

    Article  PubMed  CAS  Google Scholar 

  3. Buhtoiarov IN, Lum HD, Berke G, Sondel PM, Rakhmilevich AL (2006) Synergistic activation of macrophages via CD40 and TLR9 results in T cell independent antitumor effects. J Immunol 176:309–318

    PubMed  CAS  Google Scholar 

  4. Buhtoiarov IN, Sondel PM, Eickhoff JC, Rakhmilevich AL (2007) Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology 120:412–423

    Article  PubMed  CAS  Google Scholar 

  5. Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23:953–964

    Article  PubMed  CAS  Google Scholar 

  6. Chen T, Berenson J, Vescio R, Swift R, Gilchick A, Goodin S, LoRusso P, Ma P, Ravera C, Deckert F, Schran H, Seaman J, Skerjanec A (2002) Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J Clin Pharmacol 42:1228–1236

    Article  PubMed  CAS  Google Scholar 

  7. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  8. Fajac I, Tazi A, Hance AJ, Bouchonnet F, Riquet M, Battesti JP, Soler P (1992) Lymphocytes infiltrating normal human lung and lung carcinomas rarely express gamma delta T cell antigen receptors. Clin Exp Immunol 87:127–131

    Article  PubMed  CAS  Google Scholar 

  9. Ferretti G, Fabi A, Carlini P, Papaldo P, Cordiali Fei P, Di Cosimo S, Salesi N, Giannarelli D, Alimonti A, Di Cocco B, D’Agosto G, Bordignon V, Trento E, Cognetti F (2005) Zoledronic-acid-induced circulating level modifications of angiogenic factors, metalloproteinases and proinflammatory cytokines in metastatic breast cancer patients. Oncology 69:35–43

    Article  PubMed  CAS  Google Scholar 

  10. Fiore FCB, Nuschak B, Bertieri R, Mariani S, Bruno B, Pantaleoni F, Foglietta M BM, Massaia M (2007) Enhanced ability of dendritic cells to stimulate innate and adaptive immunity on short-term incubation with zoledronic acid. Blood 110:921–927

    Article  PubMed  CAS  Google Scholar 

  11. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, Clezardin P (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62:6538–6544

    PubMed  CAS  Google Scholar 

  12. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92:4150–4166

    PubMed  CAS  Google Scholar 

  13. Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  14. Gordon IO, Freedman RS (2006) Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients. Clin Cancer Res 12:1515–1524

    Article  PubMed  CAS  Google Scholar 

  15. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446

    PubMed  CAS  Google Scholar 

  16. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 25:1543–1549

    Article  PubMed  CAS  Google Scholar 

  17. Hamdy FC, Fadlon EJ, Cottam D, Lawry J, Thurrell W, Silcocks PB, Anderson JB, Williams JL, Rees RC (1994) Matrix metalloproteinase 9 expression in primary human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 69:177–182

    PubMed  CAS  Google Scholar 

  18. Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109

    Article  PubMed  CAS  Google Scholar 

  19. Jassar AS, Suzuki E, Kapoor V, Sun J, Silverberg MB, Cheung L, Burdick MD, Strieter RM, Ching LM, Kaiser LR, Albelda SM (2005) Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res 65:11752–11761

    Article  PubMed  CAS  Google Scholar 

  20. Kabelitz D, Wesch D, He W (2007) Perspectives of gammadelta T cells in tumor immunology. Cancer Res 67:5–8

    Article  PubMed  CAS  Google Scholar 

  21. Kowalczyk D, Skorupski W, Kwias Z, Nowak J (1997) Flow cytometric analysis of tumour-infiltrating lymphocytes in patients with renal cell carcinoma. Br J Urol 80:543–547

    PubMed  CAS  Google Scholar 

  22. Legay F, Gauron S, Deckert F, Gosset G, Pfaar U, Ravera C, Wiegand H, Schran H (2002) Development and validation of a highly sensitive RIA for zoledronic acid, a new potent heterocyclic bisphosphonate, in human serum, plasma and urine. J Pharm Biomed Anal 30:897–911

    Article  PubMed  CAS  Google Scholar 

  23. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    Article  PubMed  CAS  Google Scholar 

  24. Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A (2000) Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 17:445–451

    PubMed  CAS  Google Scholar 

  25. Luo Y, Zhou H, Krueger J, Kaplan C, Lee SH, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141

    Article  PubMed  CAS  Google Scholar 

  26. Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L, Pisa P (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177:7398–7405

    PubMed  CAS  Google Scholar 

  27. Miyagawa F, Tanaka Y, Yamashita S, Minato N (2001) Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human gamma delta T cells by aminobisphosphonate antigen. J Immunol 166:5508–5514

    PubMed  CAS  Google Scholar 

  28. Morgan C LP, Jones RM, Bertelli G, Thomas GA, Leonard RC (2007) The in vitro anti-tumour activity of zoledronic acid and docetaxel at clinically achievable concentrations in prostate cancer. Acta Oncol 46:669–677

    Article  PubMed  CAS  Google Scholar 

  29. Munn DH (2006) Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol 18:220–225

    Article  PubMed  CAS  Google Scholar 

  30. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101:4878–4886

    Article  PubMed  CAS  Google Scholar 

  31. Rokhlin OW, Griebling TL, Karassina NV, Raines MA, Cohen MB (1996) Human prostate carcinoma cell lines secrete GM-CSF and express GM-CSF-receptor on their cell surface. Anticancer Res 16:557–563

    PubMed  CAS  Google Scholar 

  32. Santini D, Vincenzi B, Dicuonzo G, Avvisati G, Massacesi C, Battistoni F, Gavasci M, Rocci L, Tirindelli MC, Altomare V, Tocchini M, Bonsignori M, Tonini G (2003) Zoledronic acid induces significant and long-lasting modifications of circulating angiogenic factors in cancer patients. Clin Cancer Res 9:2893–2897

    PubMed  CAS  Google Scholar 

  33. Sato K, Kimura S, Segawa H, Yokota A, Matsumoto S, Kuroda J, Nogawa M, Yuasa T, Kiyono Y, Wada H, Maekawa T (2005) Cytotoxic effects of gammadelta T cells expanded ex vivo by a third generation bisphosphonate for cancer immunotherapy. Int J Cancer 116:94–99

    Article  PubMed  CAS  Google Scholar 

  34. Satoh T, Saika T, Ebara S, Kusaka N, Timme TL, Yang G, Wang J, Mouraviev V, Cao G, Fattah el MA, Thompson TC (2003) Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 63:7853–7860

    PubMed  CAS  Google Scholar 

  35. Savarese DM, Valinski H, Quesenberry P, Savarese T (1998) Expression and function of colony-stimulating factors and their receptors in human prostate carcinoma cell lines. Prostate 34:80–91

    Article  PubMed  CAS  Google Scholar 

  36. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  37. Skeen MJ, Ziegler HK (1995) Activation of gamma delta T cells for production of IFN-gamma is mediated by bacteria via macrophage-derived cytokines IL-1 and IL-12. J Immunol 154:5832–5841

    PubMed  CAS  Google Scholar 

  38. Takagi K, Takagi M, Kanangat S, Warrington KJ, Shigemitsu H, Postlethwaite AE (2005) Modulation of TNF-alpha gene expression by IFN-gamma and pamidronate in murine macrophages: regulation by STAT1-dependent pathways. J Immunol 174:1801–1810

    PubMed  CAS  Google Scholar 

  39. Troy A, Davidson P, Atkinson C, Hart D (1998) Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer (see comment). J Urol 160:214–219

    Article  PubMed  CAS  Google Scholar 

  40. Valdespino V, Tsagozis P, Pisa P (2007) Current perspectives in the treatment of advanced prostate cancer. Med Oncol 24:273–286

    Article  PubMed  CAS  Google Scholar 

  41. van Ravenswaay Claasen HH, Kluin PM, Fleuren GJ (1992) Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab Invest 67:166–174

    PubMed  Google Scholar 

  42. Watkins SK, Egilmez NK, Suttles J, Stout RD (2007) IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol 178:1357–1362

    PubMed  CAS  Google Scholar 

  43. Wolf AM, Rumpold H, Tilg H, Gastl G, Gunsilius E, Wolf D (2006) The effect of zoledronic acid on the function and differentiation of myeloid cells (see comment). Haematologica 91:1165–1171

    PubMed  CAS  Google Scholar 

  44. Yu P, Rowley DA, Fu YX, Schreiber H (2006) The role of stroma in immune recognition and destruction of well-established solid tumors. Curr Opin Immunol 18:226–231

    Article  PubMed  CAS  Google Scholar 

  45. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95:272–281

    Article  PubMed  CAS  Google Scholar 

  46. Zhu P, Baek SH, Bourk EM, Ohgi KA, Garcia-Bassets I, Sanjo H, Akira S, Kotol PF, Glass CK, Rosenfeld MG, Rose DW (2006) Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. (see comment). Cell 124:615–629

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Cancer Society in Stockholm, the Swedish Cancer Society, the EU 6-FP “ALLOSTEM” (LSHB-CT-2004-502219) and U.S. Department of Defense Prostate Cancer Research Program (PC030958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Eriksson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsagozis, P., Eriksson, F. & Pisa, P. Zoledronic acid modulates antitumoral responses of prostate cancer-tumor associated macrophages. Cancer Immunol Immunother 57, 1451–1459 (2008). https://doi.org/10.1007/s00262-008-0482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0482-9

Keywords

Navigation