Skip to main content

Advertisement

Log in

High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-α in lung cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Introduction

Antigen-presenting cells, like dendritic cells (DCs) and macrophages, play a significant role in the induction of an immune response and an imbalance in the proportion of macrophages, immature and mature DCs within the tumor could affect significantly the immune response to cancer. DCs and macrophages can differentiate from monocytes, depending on the milieu, where cytokines, like interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce DC differentiation and tumor necrosis factor (TNF)-α induce DC maturation. Thus, the aim of this work was to analyze by immunohistochemistry the presence of DCs (S100+ or CD1a+), macrophages (CD68+), IL-4 and TNF-α within the microenvironment of primary lung carcinomas.

Results

Higher frequencies of both immature DCs and macrophages were detected in the tumor-affected lung, when compared to the non-affected lung. Also, TNF-α-positive cells were more frequent, while IL-4-positive cells were less frequent in neoplastic tissues. This decreased frequency of mature DCs within the tumor was further confirmed by the lower frequency of CD14-CD80+ cells in cell suspensions obtained from the same lung tissues analyzed by flow cytometry.

Conclusion

These data are discussed and interpreted as the result of an environment that does not oppose monocyte differentiation into DCs, but that could impair DC maturation, thus affecting the induction of effective immune responses against the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J (2005) Global cancer statistics 2002 CA Cancer J Clin 55:74–108

    PubMed  Google Scholar 

  2. O’ Mahony D, Kummar S, Gutierrez ME (2005) Non-small-cell lung cancer vaccine therapy: a concise review. J Clin Oncol 23:1–7

    Article  CAS  Google Scholar 

  3. Anselmo LB, Gross JL, Haddad F, Deheinzelin D, Younes R, Barbuto JAM (2005) Functional analysis of cells obtained from bronchoalveolar lavage fluid (BALF) of lung cancer patients. Life Sci 76:2945–2951

    Article  PubMed  CAS  Google Scholar 

  4. Anselmo LB, Gross JL, Haddad F, Silva RA, Couto WJ, Deheinzelin WD, Younes RN, AB’Saber AM, Canzian M, Capelozzi VL, Barbuto JAM (2005) Dendritic cell distribution in primary lung cancer patients. Keystone Symposia/Basic Aspects of Tumor Immunology, 2005

  5. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  6. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162

    Article  PubMed  CAS  Google Scholar 

  7. Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA (2001) Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193:51–60

    Article  PubMed  CAS  Google Scholar 

  8. Zhou LJ, Schwarting R, Smith HM, Tedder TF (1992) A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol 149:735–742

    PubMed  CAS  Google Scholar 

  9. Egner W & Hart DN (1995) The phenotype of freshly isolated and cultured human bone marrow allostimulatory cells: possible heterogeneity in bone marrow dendritic cell populations. Immunology 85:611–620

    PubMed  CAS  Google Scholar 

  10. Sallusto F, Palermo B, Lenig D, Miettinen M, Matikainen S, Julkunen I, Forster R, Burgstahler R, Lipp M, Lanzavecchia A (1999) Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J Immunol 29:1617–1625

    Article  PubMed  CAS  Google Scholar 

  11. Gottfried E, Kreutz M, Mackensen A (2007) Tumor-induced modulation of dendritic cell function. Cytokine Growth Factor Rev (in press)

  12. Doyle A, Martin WJ, Funa K, Gazdar A, Camey D, Martin SE, Linnoila I, Cuttitta F, Mulshine J, Bunn P, Minna J. (1985) Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small cell lung cancer. J Exp Med 161:1135–1154

    Article  PubMed  CAS  Google Scholar 

  13. Porta C, Bonomi L, Lillaz B, Paglino, Rovati B, Imarisio I, Morbini P (2007) Renal cell carcinoma-induced immunosuppression: an immunophenotypic study of lymphocyte subpopulations and circulating dendritic cells. Anticancer Res 27:165–173

    PubMed  CAS  Google Scholar 

  14. Fricke I, Gabrilovich DI (2006) Dendritic cells and tumor microenvironment: a dangerous liaison. Immunol Invest 35:459–483

    Article  PubMed  CAS  Google Scholar 

  15. Chaux P, Moutet M, Faivre J, Martin F, Martin M (1996) Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7–1 and B7-2 costimulatory molecules of T-cell activation. Lab Invest 74:975–983

    PubMed  CAS  Google Scholar 

  16. Aloysius MM, Takhar A, Robins A, Eremin O (2006) Dendritic cell biology, dysfunction and immunotherapy in gastrointestinal cancers. Surgeon 4:195–210

    Article  PubMed  CAS  Google Scholar 

  17. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev Cancer 5:263–273

    Article  CAS  Google Scholar 

  18. Neves AR, Ensina LF, Anselmo LB, Leite KR, Buzaid AC, Camara-Lopes LH, Barbuto JAM (2005) Dendritic cells derived from metastatic cancer patients vaccinated with allogeneic dendritic cell-autologous tumor cell hybrids express more CD86 and induce higher levels of interferom-gamma in mixed lymphocyte reactions. Cancer Immunol Immunother 54:61–66

    Article  PubMed  CAS  Google Scholar 

  19. Sallusto P, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J Exp Med 179:1109–1118

    Article  PubMed  CAS  Google Scholar 

  20. Zhou LJ & Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588–2592

    Article  PubMed  CAS  Google Scholar 

  21. Tazi A, Bouchonnet F, Grandsaigne M, Bounsell L, Hance AJ, Soler P (1993) Evidence that granulocyte macrophage-colony-stimulating factor regulates the distribution and differentiated state of dendritic cells/Langerhans cells in human lung and lung cancers. J Clin Invest 91:566–576

    Article  PubMed  CAS  Google Scholar 

  22. Ogawa E, Takenaka K, Yanagihara K, Kurozumi M, Manabe T, Wada H, Tanaka F (2004) Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer 91:498–503

    Article  PubMed  CAS  Google Scholar 

  23. Schafer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends Biochem Sci 21:134–140

    PubMed  CAS  Google Scholar 

  24. Mc Nutt NS (1998) The S100 family of multipurpose calcium-binding proteins. J Cutan Pathol 25:521–529

    Article  CAS  Google Scholar 

  25. Steinman RM, Pack M, Inaba K (1997) Dendritic cells in the T cell areas of lymphoid organs. Immunol Rev 156:25–37

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi K, Isobe T, Ohtsuki Y, Akagi T, Sonobe H, Okuyama T (1984) Immunohistochemical study on the distribution of alpha and beta subunits of S-100 protein in human neoplasm and normal tissues. Virchows Arch B Cell Pathol Incl Mol Pathol 45:385–396

    Article  PubMed  CAS  Google Scholar 

  27. Nakano T, Oka K, Arai T, Morita S, Tsunemoto H (1989) Prognostic significance of Langerhans` cells infiltration in radiation therapy for squamous cell carcinoma of the uterine cervix. Arch Pathol Lab Med 113:507–511

    PubMed  CAS  Google Scholar 

  28. Huang JA, Huang HD, Peng QB, Zhu ZJ, Yu XR (1990) S100 protein positive dendritic cells and the significance of their density in gastric precancerous lesions. Proc Chin Acad Med Sci Peking Union Med Coll 5:93–96

    PubMed  CAS  Google Scholar 

  29. Tsujitani S, Kakeji Y, Watanabe A, Kohnoe S, Maehara Y, Sugimaghi K (1992) Infiltration of S-100 protein positive dendritic cells and peritoneal recurrence in advanced gastric cancer. Int Surg 77:238–241

    PubMed  CAS  Google Scholar 

  30. Inoue K, Furihata M, Ohtsuki Y, Fujita Y (1993) Distribution of S-100 protein-positive dendritic cells and the expression of HLA-DR antigen in transitional cell carcinoma of the urinary bladder in relation to tumour progression and prognosis. Virchows Arch A Pathol Anat Histophatol 422:351–355

    Article  CAS  Google Scholar 

  31. Sallusto F (2001) Origin and migratory properties of dendritic cells in the skin. Curr Opin Allergy Clin Immunol 1:441–448

    PubMed  CAS  Google Scholar 

  32. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P (2003) Langerhans cells —dendritic cells of the epidermis. APMIS 111:725–740

    Article  PubMed  CAS  Google Scholar 

  33. Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA (2005) Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 32:177–184

    Article  PubMed  CAS  Google Scholar 

  34. Tataroglu C, Kargi A Özkal S, Esrefoglu N, Akkoçlu A (2004) Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas (NSCLC). Lung Cancer 43:47–54

    Article  PubMed  Google Scholar 

  35. Kurabayashi A, Furihata M, Matsumoto M, Hayashi H, Ohtsuki Y (2004) Distribution of tumor-infiltrating dendritic cells in human non-small cell lung carcinoma in relation to apoptosis. Pathol Int 54:302–310

    Article  PubMed  Google Scholar 

  36. Bell D, Chomarat P, Broyles D, Netto G, Harb GM, Lebecque S, Valladeau, Davoust J, Pallucka KA, Banchereau J (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426

    Article  PubMed  CAS  Google Scholar 

  37. Goillot E, Combaret V, Landenstein R, Baubet D, Blay JY, Philip T, Favrot MC (1992) Tumor necrosis factor as an autocrine growth factor for neuroblastoma. Cancer Res 52:3194–3200

    PubMed  CAS  Google Scholar 

  38. Naylor MS, Stamp GW, Foulkes WD, Eccles D, Balkwill FR (1993) Tumor necrosis factor and its receptors in human ovarian cancer. Potential role in disease progression. J Clin Invest 91:2194–2206

    Article  PubMed  CAS  Google Scholar 

  39. Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1994) Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int J Cancer 56:777–786

    Article  PubMed  CAS  Google Scholar 

  40. Iwamoto M, Shinohara H, Miyamoto A, Okusawa M, Mabuchi H, Nohara T, Gon G, Toyoda M, Tanigawa N (2003) Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 104:92–97

    Article  PubMed  CAS  Google Scholar 

  41. Barbuto JAM, Grimes WJ, Hersh EM (1995) Antibodies to tumor necrosis factor: a component of B cell immune responses with a role in tumor/host interaction. Cancer Immunol Immunother 40:31–36

    Article  PubMed  CAS  Google Scholar 

  42. Staal-Van Den Brekel AJ, Dentener MA, Drent M, Ten Velde GPM, Buurman WA, Wouters EFM (1998) The enhanced inflammatory response in non-small cell lung carcinoma is not reflected in the alveolar compartment. Respir Med 92:76–83

    Article  Google Scholar 

  43. Tran TA, Kallakury BVS, Ambros RA, Ross J (1998) Prognostic significance of tumor necrosis factors and their receptors in nonsmall cell lung carcinoma. Cancer 83:276–282

    Article  PubMed  CAS  Google Scholar 

  44. Naylor MS, Stamp GW, Balkwill FR (1990) Investigation of cytokine gene expression in human colorectal cancer. Cancer Res 50:4436–4440

    PubMed  CAS  Google Scholar 

  45. Ito A, Sato T, Iga T, Mori Y (1990) Tumor necrosis factor bifunctionally regulates matrix metalloproteinases and tissue inhibitor of metalloproteinases (TIMP) production by human fibroblasts. FEBS Lett 269:93–95

    Article  PubMed  CAS  Google Scholar 

  46. Gordon SB, Read RC (2002) Macrophage defenses against respiratory tract infections. British Med Bull 61:45–61

    Article  CAS  Google Scholar 

  47. Baleeiro RB, Bergami-Santos PC, Tomiyoshi MY, Gross JL, Haddad F, Pinto CAL, Soares FA, Younes RN, Barbuto JAM (2008) Expression of a dendritic cell maturation marker CD83 on tumor from lung cancer patients and several human tumor cell lines: is there a biological meaning behind it? Cancer immunol Immunother 57:265–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants (#05/50422-2; #04/09956-0) from the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. M. Barbuto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baleeiro, R.B., Anselmo, L.B., Soares, F.A. et al. High frequency of immature dendritic cells and altered in situ production of interleukin-4 and tumor necrosis factor-α in lung cancer. Cancer Immunol Immunother 57, 1335–1345 (2008). https://doi.org/10.1007/s00262-008-0468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0468-7

Keywords

Navigation