Skip to main content

Advertisement

Log in

Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Although the treatment outcome of lymphoid malignancies has improved in recent years by the introduction of transplantation and antibody-based therapeutics, relapse remains a major problem. Therefore, new therapeutic options are urgently needed. One promising approach is the selective activation of apoptosis in tumor cells by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). This study investigated the pro-apoptotic potential of a novel TRAIL fusion protein designated scFvCD19:sTRAIL, consisting of a CD19-specific single-chain Fv antibody fragment (scFv) fused to the soluble extracellular domain of TRAIL (sTRAIL). Potent apoptosis was induced by scFvCD19:sTRAIL in several CD19-positive tumor cell lines, whereas normal blood cells remained unaffected. In mixed culture experiments, selective binding of scFvCD19:sTRAIL to CD19-positive cells resulted in strong induction of apoptosis in CD19-negative bystander tumor cells. Simultaneous treatment of CD19-positive cell lines with scFvCD19:sTRAIL and valproic acid (VPA) or Cyclosporin A induced strongly synergistic apoptosis. Treatment of patient-derived acute B-lymphoblastic leukemia (B-ALL) and chronic B-lymphocytic leukemia (B-CLL) cells resulted in strong tumoricidal activity that was further enhanced by combination with VPA. In addition, scFvCD19:sTRAIL prevented engraftment of human Nalm-6 cells in xenotransplanted NOD/Scid mice. The pre-clinical data presented here warrant further investigation of scFvCD19:sTRAIL as a potential new therapeutic agent for CD19-positive B-lineage malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

scFv:

Single-chain Fv antibody fragment

sTRAIL:

Soluble extracellular domain of TRAIL

CsA:

Cyclosporin A

B-ALL:

Acute B-lymphoblastic leukemia

B-CLL:

Chronic B-lymphocytic leukemia

MNC:

Peripheral blood mononuclear cells

EGFR:

Epidermal growth factor receptor

HDACi:

Histone deacetylase inhibitor

VPA:

Valproic acid

References

  1. Almasan A, Ashkenazi A (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev 14:337

    Article  PubMed  CAS  Google Scholar 

  2. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155

    Article  PubMed  CAS  Google Scholar 

  3. Barbin K, Stieglmaier J, Saul D, Stieglmaier K, Stockmeyer B, Pfeiffer M, Lang P, Fey GH (2006) Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19 antibodies. J Immunother 29:122

    Article  PubMed  CAS  Google Scholar 

  4. Baum W, Steininger H, Bair HJ, Becker W, Hansen-Hagge TE, Kressel M, Kremmer E, Kalden JR, Gramatzki M (1996) Therapy with CD7 monoclonal antibody TH-69 is highly effective for xenografted human T-cell ALL. Br J Haematol 95:327

    Article  PubMed  CAS  Google Scholar 

  5. Benedict CA, MacKrell AJ, Anderson WF (1997) Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay. J Immunol Methods 201:223

    Article  PubMed  CAS  Google Scholar 

  6. Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, Ambrose C, Tschopp J, Schneider P (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964

    Article  PubMed  CAS  Google Scholar 

  7. Bremer E, Kuijlen J, Samplonius D, Walczak H, de Leij L, Helfrich W (2004) Target cell-restricted and -enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int J Cancer 109:281

    Article  PubMed  CAS  Google Scholar 

  8. Bremer E, Samplonius D, Kroesen BJ, van Genne L, de Leij L, Helfrich W (2004) Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia 6:636

    Article  PubMed  CAS  Google Scholar 

  9. Bremer E, Samplonius DF, Peipp M, van Genne L, Kroesen BJ, Fey GH, Gramatzki M, de Leij LF, Helfrich W (2005) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res 65:3380

    PubMed  CAS  Google Scholar 

  10. Bremer E, Samplonius DF, van Genne L, Dijkstra MH, Kroesen BJ, de Leij LF, Helfrich W (2005) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J Biol Chem 280:10025

    Article  PubMed  CAS  Google Scholar 

  11. Bruenke J, Barbin K, Kunert S, Lang P, Pfeiffer M, Stieglmaier K, Niethammer D, Stockmeyer B, Peipp M, Repp R, Valerius T, Fey GH (2005) Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD19 and FcgammaRIII (CD16). Br J Haematol 130:218

    Article  PubMed  CAS  Google Scholar 

  12. Bustamante J, Caldas Lopes E, Garcia M, Di Libero E, Alvarez E, Hajos SE (2004) Disruption of mitochondrial membrane potential during apoptosis induced by PSC 833 and CsA in multidrug-resistant lymphoid leukemia. Toxicol Appl Pharmacol 199:44

    Article  PubMed  CAS  Google Scholar 

  13. Cheson BD (2006) Monoclonal antibody therapy for B-cell malignancies. Semin Oncol 33:S2

    Article  PubMed  CAS  Google Scholar 

  14. Clodi K, Wimmer D, Li Y, Goodwin R, Jaeger U, Mann G, Gadner H, Younes A (2000) Expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors and sensitivity to TRAIL-induced apoptosis in primary B-cell acute lymphoblastic leukaemia cells. Br J Haematol 111:580

    Article  PubMed  CAS  Google Scholar 

  15. Cockett MI, Bebbington CR, Yarranton GT (1990) High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (N Y) 8:662

    Article  CAS  Google Scholar 

  16. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 7:813

    Article  PubMed  CAS  Google Scholar 

  17. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910

    Article  PubMed  CAS  Google Scholar 

  18. Ghetie MA, Picker LJ, Richardson JA, Tucker K, Uhr JW, Vitetta ES (1994) Anti-CD19 inhibits the growth of human B-cell tumor lines in vitro and of Daudi cells in SCID mice by inducing cell cycle arrest. Blood 83:1329

    PubMed  CAS  Google Scholar 

  19. Greil J, Gramatzki M, Burger R, Marschalek R, Peltner M, Trautmann U, Hansen-Hagge TE, Bartram CR, Fey GH, Stehr K et al (1994) The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. Br J Haematol 86:275

    PubMed  CAS  Google Scholar 

  20. Helfrich W, Haisma HJ, Magdolen V, Luther T, Bom VJ, Westra J, van der Hoeven R, Kroesen BJ, Molema G, de Leij L (2000) A rapid and versatile method for harnessing scFv antibody fragments with various biological effector functions. J Immunol Methods 237:131

    Article  PubMed  CAS  Google Scholar 

  21. Hoelzer D, Gokbuget N, Ottmann O, Pui CH, Relling MV, Appelbaum FR, van Dongen JJ, Szczepanski T (2002) Acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 162

  22. Hylander BL, Pitoniak R, Penetrante RB, Gibbs JF, Oktay D, Cheng J, Repasky EA (2005) The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. J Transl Med 3:22

    Article  PubMed  CAS  Google Scholar 

  23. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM (2004) Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 11(Suppl 2):S193

    Article  PubMed  CAS  Google Scholar 

  24. Inoue S, Twiddy D, Dyer MJ, Cohen GM (2006) Upregulation of TRAIL-R2 is not involved in HDACi mediated sensitization to TRAIL-induced apoptosis. Cell Death Differ 13:2160

    Article  PubMed  CAS  Google Scholar 

  25. Ito C, Ribeiro RC, Behm FG, Raimondi SC, Pui CH, Campana D (1998) Cyclosporin A induces apoptosis in childhood acute lymphoblastic leukemia cells. Blood 91:1001

    PubMed  CAS  Google Scholar 

  26. Kawagoe R, Kawagoe H, Sano K (2002) Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res 26:495

    Article  PubMed  CAS  Google Scholar 

  27. Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J, Fox JA (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299:31

    PubMed  CAS  Google Scholar 

  28. Kennedy GA, Tey SK, Cobcroft R, Marlton P, Cull G, Grimmett K, Thomson D, Gill D (2002) Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: a retrospective review. Br J Haematol 119:412

    Article  PubMed  CAS  Google Scholar 

  29. Lang P, Barbin K, Feuchtinger T, Greil J, Peipp M, Zunino SJ, Pfeiffer M, Handgretinger R, Niethammer D, Fey GH (2004) Chimeric CD19 antibody mediates cytotoxic activity against leukemic blasts with effector cells from pediatric patients who received T-cell-depleted allografts. Blood 103:3982

    Article  PubMed  CAS  Google Scholar 

  30. Lincz LF, Yeh TX, Spencer A (2001) TRAIL-induced eradication of primary tumour cells from multiple myeloma patient bone marrows is not related to TRAIL receptor expression or prior chemotherapy. Leukemia 15:1650

    Article  PubMed  CAS  Google Scholar 

  31. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES (1997) Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 272:25417

    Article  PubMed  CAS  Google Scholar 

  32. MacFarlane M, Harper N, Snowden RT, Dyer MJ, Barnett GA, Pringle JH, Cohen GM (2002) Mechanisms of resistance to TRAIL-induced apoptosis in primary B cell chronic lymphocytic leukaemia. Oncogene 21:6809

    Article  PubMed  CAS  Google Scholar 

  33. Melnick A, Licht JD (2002) Histone deacetylases as therapeutic targets in hematologic malignancies. Curr Opin Hematol 9:322

    Article  PubMed  Google Scholar 

  34. Muhlenbeck F, Schneider P, Bodmer JL, Schwenzer R, Hauser A, Schubert G, Scheurich P, Moosmayer D, Tschopp J, Wajant H (2000) The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 275:32208

    Article  PubMed  CAS  Google Scholar 

  35. Multani PS, O’Day S, Nadler LM, Grossbard ML (1998) Phase II clinical trial of bolus infusion anti-B4 blocked ricin immunoconjugate in patients with relapsed B-cell non-Hodgkin’s lymphoma. Clin Cancer Res 4:2599

    PubMed  CAS  Google Scholar 

  36. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271

    Article  PubMed  CAS  Google Scholar 

  37. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277:815

    Article  PubMed  CAS  Google Scholar 

  38. Pan G, O’Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111

    Article  PubMed  CAS  Google Scholar 

  39. Peipp M, Kupers H, Saul D, Schlierf B, Greil J, Zunino SJ, Gramatzki M, Fey GH (2002) A recombinant CD7-specific single-chain immunotoxin is a potent inducer of apoptosis in acute leukemic T cells. Cancer Res 62:2848

    PubMed  CAS  Google Scholar 

  40. Peipp M, Simon N, Loichinger A, Baum W, Mahr K, Zunino SJ, Fey GH (2001) An improved procedure for the generation of recombinant single-chain Fv antibody fragments reacting with human CD13 on intact cells. J Immunol Methods 251:161

    Article  PubMed  CAS  Google Scholar 

  41. Pietersz GA, Wenjun L, Sutton VR, Burgess J, McKenzie IF, Zola H, Trapani JA (1995) In vitro and in vivo antitumor activity of a chimeric anti-CD19 antibody. Cancer Immunol Immunother 41:53

    Article  PubMed  CAS  Google Scholar 

  42. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271:12687

    Article  PubMed  CAS  Google Scholar 

  43. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG, Neuberg DS, Flinn IW, Rai KR, Byrd JC, Kay NE, Greaves A, Weiss A, Kipps TJ (2004) ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 351:893

    Article  PubMed  CAS  Google Scholar 

  44. Sakajiri S, Kumagai T, Kawamata N, Saitoh T, Said JW, Koeffler HP (2005) Histone deacetylase inhibitors profoundly decrease proliferation of human lymphoid cancer cell lines. Exp Hematol 33:53

    Article  PubMed  CAS  Google Scholar 

  45. Scheuermann RH, Racila E (1995) CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 18:385

    Article  PubMed  CAS  Google Scholar 

  46. Stamenkovic I, Seed B (1988) CD19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J Exp Med 168:1205

    Article  PubMed  CAS  Google Scholar 

  47. Stone MJ, Sausville EA, Fay JW, Headlee D, Collins RH, Figg WD, Stetler-Stevenson M, Jain V, Jaffe ES, Solomon D, Lush RM, Senderowicz A, Ghetie V, Schindler J, Uhr JW, Vitetta ES (1996) A phase I study of bolus versus continuous infusion of the anti-CD19 immunotoxin, IgG-HD37-dgA, in patients with B-cell lymphoma. Blood 88:1188

    PubMed  CAS  Google Scholar 

  48. Tamada K, Chen L (2006) Renewed interest in cancer immunotherapy with the tumor necrosis factor superfamily molecules. Cancer Immunol Immunother 55:355

    Article  PubMed  CAS  Google Scholar 

  49. Truneh A, Sharma S, Silverman C, Khandekar S, Reddy MP, Deen KC, McLaughlin MM, Srinivasula SM, Livi GP, Marshall LA, Alnemri ES, Williams WV, Doyle ML (2000) Temperature-sensitive differential affinity of TRAIL for its receptors DR5 is the highest affinity receptor. J Biol Chem 275:23319

    Article  PubMed  CAS  Google Scholar 

  50. Uckun FM, Jaszcz W, Ambrus JL, Fauci AS, Gajl-Peczalska K, Song CW, Wick MR, Myers DE, Waddick K, Ledbetter JA (1988) Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood 71:13

    PubMed  CAS  Google Scholar 

  51. Wajant H, Moosmayer D, Wuest T, Bartke T, Gerlach E, Schonherr U, Peters N, Scheurich P, Pfizenmaier K (2001) Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20:4101

    Article  PubMed  CAS  Google Scholar 

  52. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J 16:5386

    Article  PubMed  CAS  Google Scholar 

  53. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157

    Article  PubMed  CAS  Google Scholar 

  54. Wang S, El-Deiry WS (2003) TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628

    Article  PubMed  CAS  Google Scholar 

  55. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA et al (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673

    Article  PubMed  CAS  Google Scholar 

  56. Yazawa N, Hamaguchi Y, Poe JC, Tedder TF (2005) Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci USA 102:15178

    Article  PubMed  CAS  Google Scholar 

  57. Ziauddin MF, Yeow WS, Maxhimer JB, Baras A, Chua A, Reddy RM, Tsai W, Cole GW Jr Schrump DS, Nguyen DM (2006) Valproic acid, an antiepileptic drug with histone deacetylase inhibitory activity, potentiates the cytotoxic effect of Apo2L/TRAIL on cultured thoracic cancer cells through mitochondria-dependent caspase activation. Neoplasia 8:446

    Article  PubMed  CAS  Google Scholar 

  58. Zunino SJ, Storms DH (2006) Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett 240:123

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Domenica Saul, Kristin Mentz, Linda van Genne and Douwe Samplonius for excellent technical assistance and Thorsten Haferlach for determining the p53 deletion status of B-CLL samples. The personnel of the University of Erlangen animal research facility is kindly acknowledged for breeding and taking care of the mice and Teresa M. Allen for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julia Stieglmaier or Georg H. Fey.

Additional information

This work was supported by Schickedanz KinderKrebs Stiftung (JS) and grants from the Association “Kaminkehrer helfen krebskranken Kindern” (CK, GHF), the Association of supporters of the University of Erlangen Childrens’s Hospital (GHF) and the Dutch Cancer Society (RUG 2002-2668 and 2005-3358) (EB, BC, WH).

Julia Stieglmaier and Edwin Bremer contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stieglmaier, J., Bremer, E., Kellner, C. et al. Selective induction of apoptosis in leukemic B-lymphoid cells by a CD19-specific TRAIL fusion protein. Cancer Immunol Immunother 57, 233–246 (2008). https://doi.org/10.1007/s00262-007-0370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0370-8

Keywords

Navigation